
Computer Programming
Training problems for M3 2018 term 2

Ted Szylowiec
tedszy@gmail.com

SICP (Structure and Interpretation of Computer Programs) online here:

https://sarabander.github.io/sicp/

Download Racket here:

https://racket-lang.org/

Use Racket online at Tio:

https://tio.run/#racket

Have a look at Racket code:

https://github.com/tedszy/Racketry

1 Lambda
1. Use define to define a symbol having an integer value.

2. Use define to define a symbol having a string value.

3. Use define to define a symbol having a boolean value.

4. Define a symbol to have a rational value.

5. Define a symbol to have a float value.

6. Use define and lambda to define a symbol having a function value.

7. Explain why these give you errors.
(a) (define "x" 10)
(b) (define 10 5)
(c) (define #f a)
(d) ("string-append" "good" "night")
(e) (define (f "x") (* x x))
(f) (define ("f" x) (* x x))

8. What is a lambda? Who discovered it? Why is it so interesting in computer science?

9. Give some examples of computer programming languages that have lambda and sup-
port lambda-style programming.

1

https://sarabander.github.io/sicp/
https://racket-lang.org/
https://tio.run/#racket
https://github.com/tedszy/Racketry

2 Lambda

10. Practice arrow notation. What is the result?
(a) px Ñ x2 ` 1qp3q
(b) px, y Ñ 2x` 5yqp3, 7q
(c) px, y, z Ñ ?xy`

?
xz`?yzqp2, 3, 5q

(d) px, y, z Ñ |xy| ` |xz| ` |yz|qp´1, 2,´3q
(e) px, y Ñ x2 ` y2qppx Ñ x` 1qp2q, px Ñ x´ 2qp7qq

11. Write this as a lambda expression: x Ñ x2 ` 3x` 1.

12. Write this as a lambda expression: x Ñ x2 if x is odd, else x3. Use Racket’s if and odd?
function.

13. Write this as a lambda expression: x, y Ñ ?xy. Use Racket’s sqrt function.

14. Write using lambda: x, y, z Ñ x2`y2`z2

2 .

15. The identity function takes x and returns x without any changes: x Ñ x. Write the
identity function using lambda.

16. Change lambda expression to arrow (Ñ) notation:

(lambda (x y) (+ (* 2 x) (* 3 y)))

17. Change lambda expression to arrow notation:

(lambda (x y z) (+ (/ (sqrt x))
(/ (sqrt y))
(/ (sqrt z))))

18. What does Racket return?
(a) > (lambda (x) (* x x))
(b) > ((lambda (x) (* x x)) 5)
(c) > ((lambda (x y) (+ 1 (* x y))) 6 7)
(d) > ((lambda (x) (string-append "happy " x)) "halloween")
(e) > ((lambda (x) (string-append x "happy ")) "halloween")

19. What does Racket return?
(a) > ((lambda (x y z) (+ x y z)) 10 21 32)
(b) > ((lambda (x y z) (+ (/ x) (/ y) (/ z))) 2 3 5)
(c) > ((lambda (x y) (* (+ x y) (- x y))) 7 5)

20. What does this expression return?

((lambda (x)
(* ((lambda (y) (+ (* 2 y) 1)) x)

((lambda (y) (- y 1)) x)))
10)

21. Write a lambda-expression that adds the square roots of 3 and 5.

22. Write a lambda expression that finds the harmonic mean of 2, 5 and 7.

23. Write a lambda expression that finds the average of the lengths of these two lists: (list
’a ’b ’c) and (list 1 2 3 4 5). Use the length function to get the length of a list.

Lambda 3

24. Let f : x Ñ 5x and g : x Ñ 2x. Write a one-line lambda expression that does f p3q` gp6q.

25. Change this to lambda-style function definition.

(define (f x)
(+ (* x x) 5)

26. Change to lambda-style function definition.

(define (f x)
(if (even? x) (/ x 2) (* x 2)))

27. Change to lambda-style definition.

(define (g x y)
(/ (+ x y) 2))

28. Change to lambda-style definition.

(define (h x y z)
(expt (* x y z) 1/3))

29. Do this computation with a one-shot expression using a lambda and no definitions.

(define (f x)
(+ (* 2 x) 1))

(f 10)

30. Do this as a one-line expression using lambda, without definitions.

(define (greetings s)
(string-append "hello there " s))

(greetings "Jim")

31. Rewrite this as one expression using lambda and no definitions.

(define a 10)
(define b 25)
(define (f x y) (- (* x y) 5))
(f a b)

32. Rewrite all this as a one-line expression using lambda.

(define s1 "greetings ")
(define s2 "earthman")
(define (F a b)

(string-append a b ", take me to your leader"))
(F s1 s2)

33. Get rid of all symbol definitions and rewrite this program as a one-line expression
using lambda.

4 Map and filter

(define a 30)
(define b 40)
(define c 60)
(define (average x y z)

(/ (+ x y z) 3))
(average a b c)

34. Let f : x Ñ x2 and g : x Ñ x` 1. Write f pgp5qq as one expression using two lambdas.
Don’t use define or compose.

35. Let f : x Ñ 2x` 1 and g : x Ñ 3x` 2. Write f pgp10qq in Racket using only lambdas.

2 Map and filter
36. What does this expression return?

(map (lambda (x) (* x x))
(list 1 2 3 4 5 6 7))

37. What does this expression return?

(map (lambda (x y) (* (+ x 3) (- y 2)))
(list 1 2 3 4 5 6 7)
(list 7 6 5 4 3 2 1))

38. Write a one-shot expression that takes the numbers from 0 to 99, squares them if they
are odd, and cubes them if they are even. Use map, lambda, if, odd? and range.

39. What do these expressions do?
(a) (map even? (range 10))
(b) (filter even? (range 10))
(c) (map odd? (list 1 2 3 4 5 6 7))
(d) (filter odd? (list 1 2 3 4 5 6 7))
(e) (filter even? (list 1 2 3 4 5 6 7))
(f) (filter (lambda (x) (= (remainder x 3) 0)) (list 1 2 3 4 5 6 7))

40. What does this expression do?

(filter (lambda (x) (> x 2))
(list -2 5 -8 3 2 1 9 8 -1 0))

41. How many numbers from 0 to 999 are divisible by 7? Write a Racket expression to
calculate this. Use length, filter, lambda, range, = and remainder.

42. Write a Racket expression that takes (list 0 -3 6 -8 7 9 -4 2) keeps only the ele-
ments > 1, and then squares them. Use filter, map and lambda.

43. Write Racket expression that calculates how many numbers from 0 to 999 are divisible
by 2, 3 and 7. Use length, filter, lambda, if, and, remainder, = and range.

44. Map the function x Ñ 1{
?

x onto the list of numbers 1,2,... 10. Then filter the result to
keep all the ones that are bigger than 1/3. Use map, filter, > and lambda.

Logic 5

3 Logic
45. The crystal ball says “tomorrow you will not eat an apple”. If we let p be “you will eat
an apple”, then we can write what the crystal ball predicts as p.

Draw some cartoons for what can happen tomorrow. When is the crystal ball right?
When is it wrong? When is p true and when is it false?

46. The crystal ball says “tomorrow you will either eat an apple or see an alien but not
both.” If we let p be “you will eat an apple” and q be “you will see an alien” then we can
write the crystal ball prediction as p‘ q. This is called xor or exclusive or. Either p can be
true or q can be true but not both.

Draw cartoons for what can happen tomorrow. When is the crystal ball right and when
is it wrong? Use this to figure out when p‘ q is false and when it is true.

47. Fill in these logic tables.

^ T F

T

F

_ T F

T

F

Ñ T F

T

F

48. Fill in these logic tables.

ô T F

T

F

‘ T F

T

F

49. Figure out the truth values.

(a) F. (b) T. (c) F. (d) T.

50. Figure out the truth values. Work from the inside out, like the way you evaluate Racket
expressions.

(a) p F^Tq _ pF^ Fq. (b) pFÑ Tq Ñ p T_ Fq. (c) pTÑ Fq ^ pFÑ Tq.

51. Figure out the truth values.

(a) p T‘ Fq ô pT‘Tq. (b) pTô Fq ‘ p Tô Fq. (c) ppFô Tq ô p Tô Tq.

52. Make truth tables.
(a) Make a truth table for p Ñ q.
(b) Make a truth table for p_ q. Is it the same as in (a)?
(c) Make a truth table for pp Ñ qq ô p p_ qq. Is it a tautology?

53. Make truth tables.
(a) Make a truth table for pp^ qq.
(b) Make a truth table for p_ q. Is it the same as in (a)?
(c) Make a truth table for pp^ qq ô p p_ qq. Is it a tautology?

54. Make truth tables.
(a) Make a truth table for p‘ q.

6 Logic

(b) Make a truth table for pp ô qq. Is it the same as in (a)?
(c) Make a truth table for p p‘ qq ô pp ô qq. Is it a tautology?

55. Make truth tables.
(a) Make a truth table for p ô q.
(b) Make a truth table for pp Ñ qq ^ pq Ñ pq. Is it the same as in (a)?
(c) Make a truth table for pp ô qq ô ppp Ñ qq ^ pq Ñ pqq. Is it a tautology?

56. Make a truth table for the expression

pp p Ñ qq ^ p p Ñ qqq Ñ p.

Is this expression a tautology?

57. Make a truth table for the expression

 ppp^ qq ^ rq.

It has three variables, so the table with have 8 rows. Is the expression a tautology?

58. Make a truth table for
ppp Ñ qq ^ pp Ñ rqq Ñ r.

Is this a tautology?

59. Make a truth table for

ppp^ qq ^ pp Ñ rqq _ p pp_ qq _ pp Ñ rqq

Is it a tautology?

60. Racket has not, and, or, #t and #f built into the language. Translate the following logic
propositions into Racket and evaluate them.

(a) p T^ Fq _ pT_ Fq.
(b) pT_ Fq ^ ppT_ Fq ^ pF_ Fqq.
(c) p pT^ Fq _ pF^ Fqq _ pT^Tq.

61. Make a truth table and show that p Ñ q is the same as p_ q.

62. Let F and G be two logic expressions. Another way we can show that F is the same
as G is to make a truth table for F ô G and show that it is a tautology. Do this with
F “ p Ñ q and G “ p_ q.

63. Define a Racket function called implies that does p, q ÝÑ p Ñ q. Use the idea that
p Ñ q is the same as p_ q.

64. Translate these logic propositions into Racket and evaluate them.
(a) pTÑ pT^ Fqq _ pFÑ Tq.
(b) ppF^ Fq Ñ pT_ Fqq Ñ pF_Tq.
(c) pTÑ Fq Ñ pFÑ Tq.

65. Make a truth table and show that p ô q can be expressed as pp Ñ qq ^ pq Ñ pq.

66. Let F “ p ô q and G “ p Ñ q^ q Ñ p. Show that F and G are the same by making a
truth table and showing that F ô G is a tautology.

Logic 7

67. Define a Racket function called iff (if and only if) that does p, q ÝÑ p ô q. Use the
idea that p ô q is the same as pp Ñ qq ^ pq Ñ pq.

68. Translate these logic propositions into Racket and evaluate them.
(a) pTô pFÑ Tqq _ pFô pTÑ Fqq.
(b) ppTô Fq Ñ pT^Tqq ô pTÑ Fq.
(c) ppT_ Fq ô pF^Tqq ô pFÑ Fq.

69. Make a truth table and show that p‘ q is the same as pp ô qq.

70. Let F “ p ‘ q and G “ pp ô qq. Make a truth table and show that F ô G is a
tautology.

71. Define a Racket function called xor (exclusive or) that does p, q ÝÑ p‘ q. Use the idea
that p‘ q is the same as pp ô qq.

72. Translate these logic propositions into Racket and evaluate them.
(a) pT‘ Fq ô pT‘Tq.
(b) pFô pT‘ Fqq _ pF‘ pFô Tqq.
(c) ppTô Fq ‘ pTÑ Fqq ‘ pTÑ Fq.

73. Find a way to express p ô q using only ^, _ and .

74. Find a way to express p‘ q using only ^, _ and .

75. Save your definitions for implies, iff and xor in a file called logic.rkt. Make sure it
works by loading it in Racket.

76. Define a Racket function F : p, q ÝÑ ppp Ñ qq ô pq‘ pqq and use it to evaluate FpT,Tq,
FpF,Fq.

77. Define a Racket function F : p, q ÝÑ ppp ‘ pp _ qqq ^ p q Ñ pq And use it to build a
truth table for F by calculating FpF,Fq, FpF,Tq, FpT,Fq and FpT,Tq.

78. Define a Racket function F : p, q ÝÑ pp‘ p q^ pq Ñ pqqq. Use it to build a truth table
for F.

79. Define a Racket function G : p, q, r ÝÑ ppp Ñ qq ô rq ‘ ppr Ñ pq ô qq and use it (and
Racket) to help you quickly build a truth table for G.

80. What do these expressions evaluate into and which ones give errors (and why)?
(a) (+ 1 2 3 4 5)
(b) (+ (list 1 2 3 4 5))
(c) (apply + (list 1 2 3 4 5))
(d) (apply sqrt 16)
(e) (apply sqrt (list 16))
(f) (sqrt (list 16))
(g) (remainder 33 10)
(h) (remainder (list 33 10))
(i) (apply remainder (list 33 10))
(j) (* (list 1 2 3 4))

(k) (apply * (list 1 2 3 4))
(l) (* 1 2 3 4)

8 Logic

81. Given the code:

(define mydata (list 10 20 50))
(define (average x y z) (/ (+ x y z) 3))

(a) Use car and cdr and average to find the average of mydata
(b) Use apply and average to do the same job much more easily.

82. Suppose you did six experiments and you have your experimental results packed into
a list of lists.

(define mydata (list (list 4 12 17)
(list 8 19 14)
(list 12 16 18)
(list 20 10 15)
(list 7 17 19)
(list 9 10 13)))

(a) Write a Racket function that finds the geometric mean of three arguments. Use expt.
(b) Use map, apply and lambda to write one expression that calculates the geometric

mean of each one of your experimental results and returns the answers in a list.

83. You did four experiments. Each experiment gave you a list of five numbers as a result.
All this data is packed into a list of lists.

(define mydata (list (list 4 1 11 7 21)
(list 8 19 21 7 5)
(list 3 12 22 9 15)
(list 21 5 16 8 9)))

We want to divide the product of the numbers of one experiment by their sum. And we
want to do that for each experimental result. Write a one-shot expression in Racket that
does the job. Use map, lambda, apply, etc.

84. Add these to your logic.rkt library and save it.

(define pvalues (list #t #f))
(define pqvalues (list (list #f #f) (list #f #t)

(list #t #f) (list #t #t)))
(define pqrvalues (list (list #f #f #f) (list #f #f #t)

(list #f #t #f) (list #f #t #t)
(list #t #f #f) (list #t #f #t)
(list #t #t #f) (list #t #t #t)))

We will use them to quickly build truth tables.

85. Use Racket to quickly build a truth table for Fppq “ ppp‘ pq Ñ pq _ p.
(a) Define F in Racket.
(b) Use map, F and pvalues to build a truth table.

86. Let Fpp, qq “ pp_ qq Ñ pp‘ pp^ qqq.
(a) Define F in Racket.

Structs 9

(b) Use F, map, lambda, apply and pqvalues to quickly build a truth table with a one-shot
expression.

87. Let Fpp, q, rq “ ppr Ñ qq ô pp‘ rqq _ pp Ñ rq
(a) Define F in Racket.
(b) Use F, map, lambda, apply and pqrvalues to quickly build a truth table.

4 Structs
88. Create a name data type using lists. The first element of the list is the symbol ’name,
then comes the first-name, middle-name and last-name. Write these functions: make-name,
get-first-name, get-middle-name, get-last-name. Also write a predicate name? that
checks the symbol at the beginning to see if a list is actually someone’s name.

89. Make a name and test your functions to see if they work as expected.

(define n (make-name "Alvin" "Cortez" "Mendoza"))
(name? n)
(get-first-name n)
(get-middle-name n)
(get-last-name n)

90. Create a point data type using lists. The first element of the list is the symbol ’point,
then comes the x component and the y component. Write these functions: make-point,
get-point-x, get-point-y. Also write a predicate point? that checks the symbol at the
beginning to see if the list really is a point.

91. Make a point and test your functions to see if they work as expected.

(define P (make-point 42 -11))
(point? P)
(get-point-x P)
(get-point-y P)

92. A line can be represented by three numbers. Create a line data type using lists. The
first element of the list will be the symbol ’line, then comes the l component, the m com-
ponent and the n component. Write these functions: make-line, get-line-l, get-line-m
and get-line-n. Also write a predicate line? that checks the symbol at the beginning to
see if the list is really a line.

93. Make a line and test your functions to see if everything works as expected.

(define r (make-line 5 7 -8))
(line? r)
(get-line-l r)
(get-line-m r)
(get-line-n r)

94. What are the differences between structs and lists?

95. When is it best to use a struct? When is it best to use a list? Give examples.

10 Structs

96. What is the difference between a normal struct and a transparent struct?

97. Create a transparent point struct for names. Like in problem 88, names have three
components: first, middle and last. Test your code by trying this in Racket.

(define n (name "Alvin" "Cortez" "Mendoza"))
(name? n)
(name-first n)
(name-middle n)
(name-last n)

98. As in problem 90, a point px, yq has two components: x and y. Create a transparent
point struct in Racket and test your code like this:

(define P (point 42 -11))
(point? P)
(point-x P)
(point-y P)

99. As in problem 92, a typical line lx ` my ` n “ 0 has three components: l, m and n.
Create a transparent line struct in Racket and test that everything works as expected:

(define r (line 5 7 -8))
(line? r)
(line-l r)
(line-m r)
(line-n r)

100. What is the difference between positive and negative area? How can area be negative?
Draw examples of positive and negative area.

101. The area-determinant formula for three vertices (triangle) is:

A “
1
2

ˆ∣∣∣∣x1 y1
x2 y2

∣∣∣∣` ∣∣∣∣x2 y2
x3 y3

∣∣∣∣` ∣∣∣∣x3 y3
x1 y1

∣∣∣∣˙
Write down the area-determinant formula for a square.

102. Draw a pentagon and a hexagon and label the vertices. Write down area-determinant
formulas for the pentagon and hexagon.

103. Draw these points and find the area of the triangle: Ap´1,´4q, Bp3,´1q, Cp2, 5q.

104. Plot these points and find the area by area-determinant formula: Ap´5,´2q, Bp0,´4q,
Cp4,´3q, Dp1, 6q.

105. Given two points px1, y1q and px2, y3q find the equation of the line going through them
lx`my` n “ 0 by area-determinant method.

106. Write a Racket function join-points that takes two points and returns the line going
through them.

107. Use your Racket function to find the line going through the points p´3, 8q and p7, 2q.

Structs 11

108. Cramer’s method. Consider the following equations:

ax` by “ e (1)
cx` dy “ f . (2)

Let

D “

∣∣∣∣a b
c d

∣∣∣∣ Dx “

∣∣∣∣e b
f d

∣∣∣∣ Dy “

∣∣∣∣a e
c f

∣∣∣∣
Substitute x “ Dx{D and y “ Dy{D into equations (1) and (2). Show that they are both
true.

109. Use Cramer’s method to solve the system:

5x´ 3y “ 7
2x` 9y “ ´1.

110. What does it mean to “join” a point and a line? There are actually two natural ways
to do this (we saw one way in class). Both ways give something unique. One way gives
you a unique line. The other way gives a unique point. We can say that joining a line to a
point gives a special line, while joining a point to a line gives a special point:

join-line-point : r, P ÝÑ special line
join-point-line : P, r ÝÑ special point

Draw examples of both ways and explain what is the special line and the special point.

111. Given two lines rl1, m1, n1s and rl2, m2, n2s, use Cramer’s method to find the point
px, yq that is the join of these two lines.

112. Write a Racket function join-lines that takes two lines and returns the intersection
point (the join of two lines).

113. Use your Racket function to find the intersection point of the lines r5, 2,´1s and
r2, 9, 5s.

114. If you did problem 110 then you know that joining a line to a point gives the perpen-
dicular line through the point. Given the components rl0, m0, n0s of the line and px0, y0q of
the point, figure out the components rl, m, ns of this line. Use the idea that if line r has
slope k, then a line perpendicular to r has slope ´1{k.

115. If you did problem 110 then you already know that joining a point px0, y0q to a line
rl0, m0, n0s gives the intersection point of the given line and the perpendicular line through
the given point. Figure out the components px, yq of this point. Use the idea that the join
of two lines is a point (you already know how to do that.) We call this special point the
perpendicular projection of px0, y0q onto the line rl0, m0, n0s.

116. Write a Racket function join-line-point that joins a line with a point giving a special
line.

117. Use your Racket function to find the line perpendicular to r1, 1,´5s going through the
point p4, 3q.

12 Structs

118. Write a Racket function join-point-line that joins a point with a line, giving a special
point.

119. Use your Racket function to find the perpendicular projection of p4, 3q onto the line
r1, 1,´5s.

120. This is an exercise in building cool and useful software. Combine all the different
ways to join points and lines into one all-purpose join function:

join : point, point ÝÑ line
join : line, line ÝÑ point
join : point, line ÝÑ point
join : line, point ÝÑ line

You will need to test the arguments of join to see what type of structs they are. Use the
predicates point? and line? for that. To check the different possibilities, use cond, which
is like a super-version of the if conditional. Read the Racket documentation (help system)
on how to use cond. If you want to make your software project even better, have cond call
the error function when the arguments to join are not one of those four cases. You can
read about the error function in the Racket documentation.

	Lambda
	Map and filter
	Logic
	Structs

