M2 Training Problems

Ted Szylowiec
tedszy@gmail.com

1 Functions, identity, inverses and plots

1. Let $f(x)=2 x+1$. Find...
(a) Find $f(f(x))$.
(b) Find $f(f(f(x)))$.
(c) Find $f(f(f(f(x))))$.
2. Let $f(x)=3 x^{2}+1$ and $g(x)=2 x-3$.
(a) Find $f(g(x))$.
(b) Find $g(f(x))$.

Are they the same?
3. Let $f(x)=a x+b$.
(a) Find $f(f(x))$.
(b) Find $f(f(f(x)))$.
4. Let $f(x)=a x+b$ and $g(x)=c x+d$.
(a) Find $f(g(x))$.
(b) Find $g(f(x))$.

Are they the same?
5. Sketch $y=x$ and $y=-x$. Put them on the same axes. Label everything.
6. Sketch $y=2 x$ and $y=-2 x$. Put them on the same axes.
7. Sketch these lines on the same axes.

$$
y=\frac{x}{2}, \quad y=-\frac{x}{2} .
$$

8. Make an exact plot of $y=3 x+2$ by finding the x-intercept and y-intercept.
9. Make an exact plot of

$$
y=-\frac{x}{2}-1
$$

10. If $f(x)$ and $g(x)$ are linear, show that
(a) $f(g(x))$ is linear.
(b) $g(f(x))$ is linear.
11. Let $f(x)=3 x+2$. Find $f^{-1}(x)$. Do it two ways:
(a) By $f\left(f^{-1}(x)\right)=I(x)$.
(b) And by $f^{-1}(f(x))=I(x)$.
12. Let $f(x)=a x+b$. Find $f^{-1}(x)$. Do it two ways:
(a) By $f\left(f^{-1}(x)\right)=I(x)$.
(b) And by $f^{-1}(f(x))=I(x)$.
13. Let $f(x)=2 x+1$. Find $f^{-1}(x)$. Make exact plots of f and f^{-1}. Also draw I.
14. Let $f(x)=-2 x+3$. Find $f^{-1}(x)$. Make exact plots of f and f^{-1}. Also draw I.
15. Consider the function

$$
f(x)=-\frac{x}{2}+3 .
$$

Find $f^{-1}(x)$. Make exact plots of f and f^{-1}. Also draw I.
16. Sketch the curve $y=x^{2}$. Use the unit square idea.
17. Let $f(x)=x^{2}$. Sketch f, I and f^{-1} on the same axes.
18. Let $f(x)=x^{2}+1$. Sketch f, I and f^{-1} on the same axes.
19. Are there functions that are inverses of themselves? Does there exist any functions with the property $f(x)=f^{-1}(x)$? In other words, f is its own inverse.
(a) Find one such self-inverse function f.
(b) Try to find more, as many as you can.

2 Introducing logarithms

20. Draw the fastest-growing function f that you can imagine. Draw $I(x)$ and use it to find the inverse f^{-1}.
21. Draw the slowest-growing function f that you can imagine. Draw the identity $I(x)$ and use it to find the inverse f^{-1}.
22. Given f, tell me about the inverse f^{-1}. Does it grow fast, slowly, very fast etc.?
(a) f is a fast-growing function.
(b) f does not grow at all.
(c) f is a slow-growing function.
(d) f is a very slow-growing function.
(e) f is a very fast-growing function.
23. Fill in this table about the behavior of $f(x)=2^{x}$ for different values of x.

$$
\begin{array}{c|c}
x & f(x) \\
\hline x=0 & f=1 \\
x>0 & \\
x<0 & \\
x>1 & \\
x \rightarrow \infty & \\
x \rightarrow-\infty &
\end{array}
$$

24. Plot $2^{x}, 3^{x}$ and 5^{x} all on the same axes.
25. Consider the function $f(n)=\left(1+\frac{1}{n}\right)^{n}$. Use a calculator. Fill in this table

x	$f(x)$
1	2
2	
5	
10	
100	
1000	

Notice how $f(n)$ keeps increasing as n gets bigger. But also notice how $f(n)$ does not increase to infinity, but approaces the magic number efrom below.
26. Now consider the slightly different function $g(n)=\left(1+\frac{1}{n}\right)^{n+1}$. Use a calculator. Fill in this table

x	$f(x)$
1	2
2	
5	
10	
100	
1000	

Notice how $g(n)$ keeps decreasing as n gets bigger. But also notice how $g(n)$ does not decrease to minus infinity, but approaces the magic number efrom above.
27. Plot $2^{x}, e^{x}$ and 10^{x} all on the same axes.
28. Plot $f(x)=2^{x}$ and the identity line $I(x)$. Use the identity line to draw the inverse $f^{-1}(x)=\log _{2} x$.
29. Plot $f(x)=3^{x}, I(x)$ and $f^{-1}(x)=\log _{3} x$ all on the same axes.
30. Fill in this table about the behavior of $g(x)=\log _{2} x$ for different values of x.

x	$g(x)$
$x=1$	$g=0$
$x>1$	
$x<1$	
$x=2$	
$x \rightarrow \infty$	
$x \rightarrow 0$	

31. Does 2^{x} ever touch the x-axis? Does $\log _{2} x$ ever touch the y-axis?
32. Fill in the table.

x	3^{x}	x	$\log _{3} x$
1		1	
2		9	
3		27	
4		243	
5		59049	

33. Fill in the table.

x	10^{x}	x
1	$\log _{10} x$	
2	1	
3		10
4	1000	
5		100,000
	$10,000,000$	

34. Plot $\log _{2} x, \log _{3} x$ and $\log _{5} x$ all on the same axes. Label all the important points.
35. Plot $\log _{2} x, \log _{e} x$ and $\log _{10} x$ all on the same axes. Label all the important points.
36. The formulas relating f, f^{-1} and I establish the two most important properties of logarithms and exponentials. Use $f(x)=a^{x}$ and $f^{-1}(x)=\log _{a} x$ and tell me what these formulas imply:
(a) $f\left(f^{-1}(x)\right)=I(x)$.
(b) $f^{-1}(f(x))=I(x)$.

3 Properties of $\log _{a}$

37. Figure out $a^{\log _{a} a^{x}}$.
38. Figure out $\log _{a} a^{\log _{a} a^{x}}$.
39. Begin with the well-known property of exponential functions $\left(a^{x}\right)^{p}=a^{x p}$ and prove the following property of logarithms:

$$
\log _{a} u^{p}=p \log _{a} u
$$

Notice how log changes powers to multiplications.
40. Begin with something we all know: $a^{x} a^{y}=a^{x+y}$ and prove the following property of logarithms:

$$
\log _{a} u v=\log _{a} u+\log _{a} v .
$$

Notice how \log changes multiplication into addition.
41. Using an idea similar to the one in problem 40, prove that

$$
\log _{a} u v w=\log _{a} u+\log _{a} v+\log _{a} w .
$$

42. Use the results of problems 39 and 40 to prove this:

$$
\log _{a} \frac{u}{v}=\log _{a} u-\log _{a} v
$$

Notice how log changes division into subtraction.
43. Use 39, 40 and 42 to figure these out.
(a) $\log _{2} 8 \times 32 \times 64$.
(b) $\log _{5} 25 \times 125 \times 625$.
(c) $\log _{2} 2^{7} 8^{5} 16^{3}$.
(d) $\log _{3} \sqrt{27} \sqrt[3]{81}$.
(e) $\log _{5} \frac{\sqrt{125}}{\sqrt[3]{625}}$.
(f) $\log _{e} \frac{\sqrt{e}}{e^{3}} \sqrt[3]{e}$.
44. Use plots to explain why $0<x<1$ when $\log x$ is negative.
45. Use plots to explain why $\log x$ is positive when $x>1$.
46. Let $x=a / b$. Use the formula in 42 to show that $\log x$ is negative when $0<x<1$.
47. Let $x=a / b$. Use the formula in 42 to show that $\log x$ is positive when $x>1$.
48. Positive or negative? Use log, algebra and plots to explain why. Assume the logarithm base is $a>1$ as usual.
(a) $\log _{a} \frac{2}{3}$
(b) $\log _{a} \frac{5}{2}$
(c) $\log _{a} 0.8$
(d) $\log _{a} 1.8$
(e) $\log _{a} \frac{e}{\pi}$
(f) $\log _{a} \frac{\pi}{e}$
49. Positive or negative? Explain why.
(a) $\log \frac{\pi}{\sqrt{10}}$
(b) $\log \frac{\sqrt{10}}{\pi}$
(c) $\log \frac{3 e}{2 \pi}$
(d) $\log \frac{2 \pi}{3 e}$
50. Bigger or smaller than 1? Explain using logarithms, algebra and plots.
(a) $\left(\frac{3}{2}\right)^{2 / 3}$
(b) $\left(\frac{2}{3}\right)^{-3 / 2}$
(c) $\left(\frac{\pi}{5}\right)^{\sqrt{5 / 2}}$
(d) $\left(\frac{1}{\sqrt{3}}\right)^{-1 / \sqrt{2}}$
(e) $(\sqrt{2})^{-\sqrt{2}}$
(f) $\left(\frac{1}{\pi}\right)^{1 / e}$
(g) $(\sqrt{e})^{-\sqrt{\pi}}$
51. Given the inequality, determine which is bigger: x or y. Prove it using logarithms.
(a) $(0.5)^{x}>(0.5)^{y}$.
(b) $(1.5)^{x}<(1.5)^{y}$.
(c) $\left(\frac{3}{2}\right)^{x}>\left(\frac{3}{2}\right)^{y}$.
52. Which is bigger: x or y ?
(a) $\left(\frac{2}{3}\right)^{x}<\left(\frac{2}{3}\right)^{y}$.
(b) $\left(\frac{e}{\pi}\right)^{x}>\left(\frac{e}{\pi}\right)^{y}$.
(c) $\left(\frac{\pi}{e}\right)^{x}<\left(\frac{\pi}{e}\right)^{y}$.
53. Which is bigger? Explain using logarithms, plots, algebra etc.
(a) 2^{70} or 7^{20} ?
(b) 5^{30} or 3^{50} ?
(c) 2^{50} or 5^{20} ?
54. Simplify.
(a) $\frac{\log _{2} 81}{\log _{2} 27}$
(b) $81^{\log _{3} 2}$
(c) $64^{\log _{4} 3}$
(d) $e^{\log _{e}\left(\log _{e} e^{2}\right)}$
(e) $\left(\frac{1}{100}\right)^{\log _{10} 2}$
55. Prove that

$$
\log _{a} b=\frac{1}{\log _{b} a}
$$

56. Simplify.
(a) $a^{1 / \log _{b} a^{2}}$
(b) $a^{1 / \log _{b^{2}} a}$
(c) $a^{1 / \log _{b 6} a^{3}}$
(d) $3^{1 / \log _{5} 3}$
(e) $3^{1 / \log _{5} 3^{2}}$
(f) $2^{1 / \log _{27} 8}$
57. Simplify and explain what values of a and b are possible.
(a) $\log (a b)-\log |a|$.
(b) $\log (a b)-\log |b|$.
(c) $\log (a b)-\log |a|-\log |b|$.
58. Prove that

$$
\log _{a^{2}} x=\frac{1}{2} \log _{a} x
$$

59. Prove that

$$
\log _{a^{p}} x=\frac{1}{p} \log _{a} x .
$$

60. Simplify. $\log _{a} b^{2}+\log _{a^{2}} b^{4}+\cdots+\log _{a^{n}} b^{2 n}$.
61. Simplify. $\left(\log _{a} b\right)\left(\log _{b} c\right)\left(\log _{c} a\right)$.
62. Simplify. $\left(\log _{a} b\right)\left(\log _{b} c\right)\left(\log _{c} d\right)\left(\log _{d} a\right)$.
63. Simplify. $\left(\log _{a} b\right)\left(\log _{b^{2}} c^{2}\right)\left(\log _{c^{3}} a^{3}\right)$.
64. Simplify. $\left(\log _{a} b\right)\left(\log _{b^{2}} c^{2}\right)\left(\log _{c^{3}} d^{3}\right)\left(\log _{d^{4}} a^{4}\right)$.
65. Simplify. $\left(\log _{a} b^{4}\right)\left(\log _{b^{2}} c^{3}\right)\left(\log _{c^{3}} d^{2}\right)\left(\log _{d^{4}} a\right)$.
66. Simplify. $\frac{\log _{8} 5}{\log _{4} 25}$.
67. Simplify. $\left(\log _{8} 5\right)\left(\log _{125} 4\right)$.
68. Simplify. $\log _{\sqrt{a}} \sqrt{x}$.
69. Simplify. $\left(\log _{\sqrt{a}} b\right)\left(\log _{\sqrt{b}} a\right)$.
70. Simplify. $\left(\log _{7} 2\right)\left(\log _{3} 5\right)\left(\log _{5} 7\right)\left(\log _{2} 3\right)$.
71. Simplify. $\left(\log _{5} 3\right)\left(\log _{4} 5\right)\left(\log _{125} 8\right)$.
72. Simplify $\left(\log _{5} 2\right)\left(\log _{27} 125\right)\left(\log _{2} 3\right)$.
73. Use $\sqrt{\log _{a} b} \sqrt{\log _{a} b}=\log _{a} b$ and prove that

$$
a \sqrt{\log _{a} b}=b \sqrt{\log _{b} a} .
$$

For what values of a and b is this true?
74. Prove the famous change-of-base formula:

$$
\log _{a} x=\left(\log _{a} b\right) \log _{b} x
$$

$4 \log _{a}$ with $0<a<1$. What happens?

75. Show that $\log _{1} x$ is undefined. (a) Use algebra and \log properties. (b) Use plots. Plot $y=1^{x}, I(x)$ and the construct the inverse function $\log _{1} x$. Then explain why it is undefined.
76. Show that $\log _{0} x$ is undefined. (a) Use algebra and basic \log properties. (b) Use plots.
77. Use algebra fundamental properties of logarithm to prove that $\log _{a} x$ is undefined when $a<0$.
78. Let $a>1$. Consider the sequence $a, a^{2}, a^{3}, a^{4} \ldots$ Are these numbers increasing or decreasing?
79. Let $0<a<1$. Consider the sequence $a, a^{2}, a^{3}, a^{4} \ldots$ Are these numbers increasing or decreasing?
80. Let $a>1$. Consider the sequence $a, a^{-2}, a^{-3}, a^{-4} \ldots$ Are these numbers increasing or decreasing?
81. Let $0<a<1$. Consider the sequence $a, a^{-2}, a^{-3}, a^{-4} \ldots$ Are these numbers increasing or decreasing?
82. Plot $y=a^{x}$ for $a>1$.
83. Plot $y=a^{x}$ for $0<a<1$.
84. Plot on the same axes $y=a^{x}, I(x)$ and $\log _{a} x$ for $a>1$. Use reflection across $I(x)$ to get $\log _{a} x$.
85. Plot on the same axes $y=a^{x}, I(x)$ and $\log _{a} x$ for $0<a<1$. Use reflection across $I(x)$ to get $\log _{a} x$.
