M2 Training Problems

Ted Szylowiec tedszy@gmail.com

1 Functions, identity, inverses and plots

1. Let f(x) = 2x + 1. Find...

(a) Find f(f(x)).

(b) Find f(f(f(x))).

(c) Find f(f(f(x)))).

2. Let $f(x) = 3x^2 + 1$ and g(x) = 2x - 3.

(a) Find f(g(x)).

(b) Find g(f(x)).

Are they the same?

3. Let f(x) = ax + b. (a) Find f(f(x)). (b) Find f(f(f(x))).

4. Let f(x) = ax + b and g(x) = cx + d. (a) Find f(g(x)). (b) Find g(f(x)).

Are they the same?

- **5.** Sketch y = x and y = -x. Put them on the same axes. Label everything.
- **6.** Sketch y = 2x and y = -2x. Put them on the same axes.
- 7. Sketch these lines on the same axes.

$$y=\frac{x}{2}, \quad y=-\frac{x}{2}.$$

- **8.** Make an exact plot of y = 3x + 2 by finding the *x*-intercept and *y*-intercept.
- 9. Make an exact plot of

$$y=-\frac{x}{2}-1.$$

10. If f(x) and g(x) are linear, show that
(a) f(g(x)) is linear.
(b) g(f(x)) is linear.

11. Let f(x) = 3x + 2. Find $f^{-1}(x)$. Do it two ways:

- (a) By $f(f^{-1}(x)) = I(x)$. (b) And by $f^{-1}(f(x)) = I(x)$.
- **12.** Let f(x) = ax + b. Find $f^{-1}(x)$. Do it two ways:
 - (a) By $f(f^{-1}(x)) = I(x)$.
 - (b) And by $f^{-1}(f(x)) = I(x)$.

13. Let f(x) = 2x + 1. Find $f^{-1}(x)$. Make exact plots of f and f^{-1} . Also draw I.

14. Let f(x) = -2x + 3. Find $f^{-1}(x)$. Make exact plots of f and f^{-1} . Also draw I.

15. Consider the function

$$f(x) = -\frac{x}{2} + 3.$$

Find $f^{-1}(x)$. Make exact plots of f and f^{-1} . Also draw I.

- **16.** Sketch the curve $y = x^2$. Use the unit square idea.
- **17.** Let $f(x) = x^2$. Sketch *f*, *I* and f^{-1} on the same axes.
- **18.** Let $f(x) = x^2 + 1$. Sketch f, I and f^{-1} on the same axes.

19. Are there functions that are inverses of themselves? Does there exist any functions with the property $f(x) = f^{-1}(x)$? In other words, *f* is its own inverse.

- (a) Find one such self-inverse function f.
- (b) Try to find more, as many as you can.

2 Introducing logarithms

20. Draw the fastest-growing function *f* that you can imagine. Draw I(x) and use it to find the inverse f^{-1} .

21. Draw the slowest-growing function f that you can imagine. Draw the identity I(x) and use it to find the inverse f^{-1} .

22. Given *f*, tell me about the inverse f^{-1} . Does it grow fast, slowly, very fast etc.?

- (a) *f* is a fast-growing function.
- (b) *f* does not grow at all.
- (c) *f* is a slow-growing function.
- (d) *f* is a very slow-growing function.
- (e) *f* is a very fast-growing function.

23. Fill in this table about the behavior of $f(x) = 2^x$ for different values of x.

x	f(x)
x = 0	f = 1
x > 0	
x < 0	
x > 1	
$x \to \infty$	
$x \to -\infty$	

24. Plot 2^x , 3^x and 5^x all on the same axes.

25. Consider the function $f(n) = \left(1 + \frac{1}{n}\right)^n$. Use a calculator. Fill in this table

x	f(x)
1	2
2	
5	
10	
100	
1000	

Notice how f(n) keeps increasing as n gets bigger. But also notice how f(n) does not increase to infinity, but approaces the magic number *e* from below.

26. Now consider the slightly different function $g(n) = \left(1 + \frac{1}{n}\right)^{n+1}$. Use a calculator. Fill in this table

x	f(x)
1	2
2	
5	
10	
100	
1000	

Notice how g(n) keeps decreasing as n gets bigger. But also notice how g(n) does not decrease to minus infinity, but approaces the magic number e from above.

27. Plot 2^x , e^x and 10^x all on the same axes.

28. Plot $f(x) = 2^x$ and the identity line I(x). Use the identity line to draw the inverse $f^{-1}(x) = \log_2 x$.

- **29.** Plot $f(x) = 3^x$, I(x) and $f^{-1}(x) = \log_3 x$ all on the same axes.
- **30.** Fill in this table about the behavior of $g(x) = \log_2 x$ for different values of *x*.

$$\begin{array}{c|cc} x & g(x) \\ \hline x = 1 & g = 0 \\ x > 1 & \\ x < 1 & \\ x = 2 & \\ x \rightarrow \infty & \\ x \rightarrow 0 & \\ \end{array}$$

- **31.** Does 2^x ever touch the *x*-axis? Does $\log_2 x$ ever touch the *y*-axis?
- 32. Fill in the table.

x	3^x x	$\log_3 x$
1	1	
2	9	
3	27	
4	243	
5	59049	

33. Fill in the table.

x	10 ^x x	$\log_{10} x$
1	1	
2	10	
3	1000	
4	100,000	
5	10,000,000	

34. Plot $\log_2 x$, $\log_3 x$ and $\log_5 x$ all on the same axes. Label all the important points.

35. Plot $\log_2 x$, $\log_e x$ and $\log_{10} x$ all on the same axes. Label all the important points.

36. The formulas relating f, f^{-1} and I establish the two most important properties of logarithms and exponentials. Use $f(x) = a^x$ and $f^{-1}(x) = \log_a x$ and tell me what these formulas imply:

(a) $f(f^{-1}(x)) = I(x)$. (b) $f^{-1}(f(x)) = I(x)$.

3 Properties of \log_a

37. Figure out $a^{\log_a a^x}$.

38. Figure out $\log_a a^{\log_a a^x}$.

39. Begin with the well-known property of exponential functions $(a^x)^p = a^{xp}$ and prove the following property of logarithms:

$$\log_a u^p = p \log_a u.$$

Notice how log changes powers to multiplications.

40. Begin with something we all know: $a^{x}a^{y} = a^{x+y}$ and prove the following property of logarithms:

$$\log_a uv = \log_a u + \log_a v.$$

Notice how log changes multiplication into addition.

41. Using an idea similar to the one in problem **40**, prove that

$$\log_a uvw = \log_a u + \log_a v + \log_a w.$$

42. Use the results of problems 39 and 40 to prove this:

$$\log_a \frac{u}{v} = \log_a u - \log_a v.$$

Notice how log changes division into subtraction.

43. Use 39, 40 and 42 to figure these out.

(a) $\log_2 8 \times 32 \times 64$. (b) $\log_5 25 \times 125 \times 625$. (c) $\log_2 2^7 8^5 16^3$. (d) $\log_3 \sqrt{27} \sqrt[3]{81}$. (a) $\log_2 \sqrt{125}$

(e)
$$\log_5 \frac{1}{\sqrt[3]{625}}$$
.
(f) $\log_e \frac{\sqrt{e}}{e^3} \sqrt[3]{e}$.

44. Use plots to explain why 0 < x < 1 when log *x* is negative.

45. Use plots to explain why $\log x$ is positive when x > 1.

46. Let x = a/b. Use the formula in **42** to show that $\log x$ is negative when 0 < x < 1.

47. Let x = a/b. Use the formula in **42** to show that $\log x$ is positive when x > 1.

48. Positive or negative? Use log, algebra and plots to explain why. Assume the logarithm base is a > 1 as usual.

(a)
$$\log_{a} \frac{2}{3}$$

(b) $\log_{a} \frac{5}{2}$
(c) $\log_{a} 0.8$
(d) $\log_{a} 1.8$
(e) $\log_{a} \frac{e}{\pi}$
(f) $\log_{a} \frac{\pi}{e}$

49. Positive or negative? Explain why. π

(a)
$$\log \frac{\pi}{\sqrt{10}}$$

(b) $\log \frac{\sqrt{10}}{\pi}$
(c) $\log \frac{3e}{2\pi}$
(d) $\log \frac{2\pi}{3e}$

50. Bigger or smaller than 1? Explain using logarithms, algebra and plots.

(a)
$$\left(\frac{3}{2}\right)^{2/3}$$

(b) $\left(\frac{2}{3}\right)^{-3/2}$
(c) $\left(\frac{\pi}{5}\right)^{\sqrt{5/2}}$
(d) $\left(\frac{1}{\sqrt{3}}\right)^{-1/\sqrt{2}}$
(e) $(\sqrt{2})^{-\sqrt{2}}$
(f) $\left(\frac{1}{\pi}\right)^{1/e}$
(g) $(\sqrt{e})^{-\sqrt{\pi}}$

51. Given the inequality, determine which is bigger: *x* or *y*. Prove it using logarithms.

- (a) $(0.5)^x > (0.5)^y$.
- (b) $(1.5)^x < (1.5)^y$.
- (c) $\left(\frac{3}{2}\right)^x > \left(\frac{3}{2}\right)^y$.

52. Which is bigger: x or y?

- (a) $\left(\frac{2}{3}\right)^x < \left(\frac{2}{3}\right)^y$.
- (b) $\left(\frac{e}{\pi}\right)^x > \left(\frac{e}{\pi}\right)^y$.
- (c) $\left(\frac{\pi}{e}\right)^{\chi} < \left(\frac{\pi}{e}\right)^{y}$.

53. Which is bigger? Explain using logarithms, plots, algebra etc.

- (a) 2^{70} or 7^{20} ?
- (b) 5^{30} or 3^{50} ?
- (c) 2^{50} or 5^{20} ?

54. Simplify.

- (a) $\frac{\log_2 81}{\log_2 27}$ (b) $81^{\log_3 2}$
- (c) $64^{\log_4 3}$
- (d) $e^{\log_e(\log_e e^2)}$
- (e) $\left(\frac{1}{100}\right)^{\log_{10} 2}$

$$\log_a b = \frac{1}{\log_b a}.$$

56. Simplify.

- (a) $a^{1/\log_b a^2}$
- (b) $a^{1/\log_{b^2} a}$
- (c) $a^{1/\log_{b^6} a^3}$
- (d) $3^{1/\log_5 3}$
- (e) $3^{1/\log_5 3^2}$
- (f) $2^{1/\log_{27} 8}$

57. Simplify and explain what values of *a* and *b* are possible.

- (a) $\log(ab) \log|a|$.
- (b) $\log(ab) \log|b|$.
- (c) $\log(ab) \log|a| \log|b|$.

58. Prove that

$$\log_{a^2} x = \frac{1}{2} \log_a x.$$

59. Prove that

$$\log_{a^p} x = \frac{1}{p} \log_a x$$

60. Simplify. $\log_a b^2 + \log_{a^2} b^4 + \dots + \log_{a^n} b^{2n}$. 61. Simplify. $(\log_a b)(\log_b c)(\log_c a)$. 62. Simplify. $(\log_a b)(\log_b c)(\log_c d)(\log_d a)$. 63. Simplify. $(\log_a b)(\log_{b^2} c^2)(\log_{c^3} a^3)$. 64. Simplify. $(\log_a b)(\log_{b^2} c^2)(\log_{c^3} d^3)(\log_{d^4} a^4)$. 65. Simplify. $(\log_a b^4)(\log_{b^2} c^3)(\log_{c^3} d^2)(\log_{d^4} a)$. 66. Simplify. $(\log_8 5)(\log_{125} 4)$. 67. Simplify. $(\log_8 5)(\log_{125} 4)$. 68. Simplify. $(\log_{\sqrt{a}} \sqrt{x})$. 69. Simplify. $(\log_{\sqrt{a}} b)(\log_{\sqrt{b}} a)$. 70. Simplify. $(\log_7 2)(\log_3 5)(\log_5 7)(\log_2 3)$. 71. Simplify. $(\log_5 3)(\log_4 5)(\log_{125} 8)$. 72. Simplify $(\log_5 2)(\log_{27} 125)(\log_2 3)$. 73. Use $\sqrt{\log_a b}\sqrt{\log_a b} = \log_a b$ and prove that

$$a^{\sqrt{\log_a b}} = b^{\sqrt{\log_b a}}.$$

For what values of *a* and *b* is this true?

74. Prove the famous change-of-base formula:

$$\log_a x = (\log_a b) \log_b x.$$

4 \log_a with 0 < a < 1. What happens?

75. Show that $\log_1 x$ is undefined. (a) Use algebra and log properties. (b) Use plots. Plot $y = 1^x$, I(x) and the construct the inverse function $\log_1 x$. Then explain why it is undefined.

76. Show that $\log_0 x$ is undefined. (a) Use algebra and basic log properties. (b) Use plots.

77. Use algebra fundamental properties of logarithm to prove that $\log_a x$ is undefined when a < 0.

78. Let a > 1. Consider the sequence a, a^2 , a^3 , a^4 ... Are these numbers increasing or decreasing?

79. Let 0 < a < 1. Consider the sequence *a*, a^2 , a^3 , a^4 ... Are these numbers increasing or decreasing?

80. Let a > 1. Consider the sequence a, a^{-2} , a^{-3} , a^{-4} ... Are these numbers increasing or decreasing?

81. Let 0 < a < 1. Consider the sequence a, a^{-2} , a^{-3} , a^{-4} ... Are these numbers increasing or decreasing?

- **82.** Plot $y = a^x$ for a > 1.
- **83.** Plot $y = a^x$ for 0 < a < 1.

84. Plot on the same axes $y = a^x$, I(x) and $\log_a x$ for a > 1. Use reflection across I(x) to get $\log_a x$.

85. Plot on the same axes $y = a^x$, I(x) and $\log_a x$ for 0 < a < 1. Use reflection across I(x) to get $\log_a x$.