# SME M1 Training Problems 

Ted Szylowiec<br>tedszy@gmail.com

Problems that may be harder than usual (or more advanced) are marked with a dot $\bullet$. Problems that are possibly even harder (and even more advanced) are marked with two bullets $\bullet \bullet$. All problems are worth doing! Try to do all of them. Most don't take very long. Some of the problems include answers.

## Solving for $x$ and $N$-way fractions

1. Solve $(8 x-3)-(7 x-2)=1$.

Answer: $x=2$.
2. Solve $(5 x-4)-(4 x-3)-(3 x-2)=2 x-1$.

Answer: $x=1 / 2$.
3. Solve for $x$ :

$$
(1-2 x)-(2-3 x)-(3-4 x)-(4-5 x)-(5-6 x)=10
$$

Answer: $x=23 / 16$.
4. Prove this two-way formula

$$
\frac{1}{(n-2)(n-1)}=\frac{1}{n-2}-\frac{1}{n-1} .
$$

by taking the right-hand side, doing some algebra, and showing that it is equal to the left-hand side.
5. Use a two-way formula similar to the one in problem 4. Solve for $x$.

$$
\frac{x}{10 \cdot 11}+\frac{x}{11 \cdot 12}+\frac{x}{12 \cdot 13}+\frac{x}{13 \cdot 14}+\frac{x}{14 \cdot 15}=1 .
$$

Answer: $x=30$.
6. Factor the denominators into two parts and use a two-way formula like in problem 4. Solve for $x$.

$$
\frac{x}{90}+\frac{x}{110}+\frac{x}{132}+\frac{x}{156}=\frac{1}{13} .
$$

Answer: $x=9 / 4$.
7. Use a two-way fraction formula like in problem 4 and find the sum.

$$
\frac{1}{10 \cdot 11}+\frac{1}{11 \cdot 12}+\cdots+\frac{1}{100 \cdot 101}
$$

8. Prove that

$$
\frac{1}{(n+1)(n+2)(n+3)}=\frac{1}{2}\left(\frac{1}{(n+1)(n+2)}-\frac{1}{(n+2)(n+3)}\right) .
$$

9. Use a three-way formula and solve for $x$ :

$$
\frac{x}{10 \cdot 11 \cdot 12}+\frac{x}{11 \cdot 12 \cdot 13}+\frac{x}{12 \cdot 13 \cdot 14}+\frac{x}{13 \cdot 14 \cdot 15}=1 .
$$

Answer: $x=462$.
10. Factor the denominators into three-way products. Use a three-way formula. Solve for $x$.

$$
\frac{x}{120}+\frac{x}{210}+\frac{x}{336}+\frac{x}{504}=13 .
$$

Answer: $x=720$.
11. Use a three-way formula to find the sum. You may need to use a calculator.

$$
\frac{1}{10 \cdot 11 \cdot 12}+\frac{1}{11 \cdot 12 \cdot 13}+\cdots+\frac{1}{99 \cdot 100 \cdot 101}
$$

Answer: 999/222200.
12. Prove that

$$
\frac{1}{(n-3)(n-2)(n-1) n}=\frac{1}{3}\left(\frac{1}{(n-3)(n-2)(n-1)}-\frac{1}{(n-2)(n-1) n}\right) .
$$

13. Use a four-way formula to solve for $x$.

$$
\frac{x}{2 \cdot 3 \cdot 4 \cdot 5}+\frac{x}{3 \cdot 4 \cdot 5 \cdot 6}+\frac{x}{4 \cdot 5 \cdot 6 \cdot 7}+\frac{x}{5 \cdot 6 \cdot 7 \cdot 8}=13 .
$$

Answer: $x=1008$.
14. Factor the denominators into four-way products and use a four-way formula to solve for x .

$$
\frac{x}{5040}+\frac{x}{7920}+\frac{x}{11880}=17 .
$$

Answer: $x=41580$.
15. Use a four-way formula to find the sum. You may need to use a calculator.

$$
\frac{1}{10 \cdot 11 \cdot 12 \cdot 13}+\frac{1}{11 \cdot 12 \cdot 13 \cdot 14}+\cdots+\frac{1}{98 \cdot 99 \cdot 100 \cdot 101} .
$$

Answer: 1513/5999400.
16. - Study the patterns in these two, three and four-way formulas:

$$
\begin{gathered}
\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} \\
\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right) \\
\frac{1}{n(n+1)(n+2)(n+3)}=\frac{1}{3}\left(\frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}\right) .
\end{gathered}
$$

Now take a guess for a five-way formula beginning like this:

$$
\frac{1}{n(n+1)(n+2)(n+3)(n+4)}=\cdots
$$

17.     - Prove your guess for the five-way formula in problem 16.
18. •• Take a guess at a $k$-way formula. It begins like this on the left-hand side:

$$
\frac{1}{n(n+1)(n+2) \cdots(n+k-1)}=\cdots
$$

19. •• Prove the $k$-way formula that you guessed in problem 18. You can use the three dots (ellipsis) notation $\cdots$ wherever you need it.
20.     - Prove these. Use two, three and four-way formulas to change the left-hand side into the right-hand side.

$$
\begin{aligned}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) n} & =1-\frac{1}{n} \\
\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\cdots+\frac{1}{(n-2)(n-1) n} & =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{(n-1) n}\right) \\
\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5}+\cdots+\frac{1}{(n-3)(n-2)(n-1) n} & =\frac{1}{3}\left(\frac{1}{6}-\frac{1}{(n-2)(n-1) n}\right) .
\end{aligned}
$$

21.     - Study the patterns in problem 20. Guess the next one. It will be a sum of five-way terms.
22.     - Prove answer to problem 21 by using the formula that you guessed in 16.
23. •• Examine the patterns in the sums of problems 20 and 21 and take a guess for the $k$-way sum.
24. •• Use your result from problem 18 to prove your answer to problem 23.

## Sets and intervals

25. Figure them out...
(a) $\{\varnothing\} \cap \varnothing$.
(b) $\{\varnothing\} \cap\{\varnothing\}$.
(c) $\{\varnothing\} \cup \varnothing$.
(d) $\{\varnothing\} \cup\{\varnothing\}$.
26. Figure these out...
(a) $\{1, \varnothing\} \cap \varnothing$.
(b) $\{1, \varnothing\} \cap\{\varnothing\}$.
(c) $\{1, \varnothing\} \cup \varnothing$.
(d) $\{1, \varnothing\} \cup\{\varnothing\}$.
27. Let $A=\{2,5,9,11,13\}$ and $B=\{1,9,11,14,21\}$. Figure out $A \cup B$ and $A \cap B$.
28. Let $A=\{1,2,3,4,5\}, B=\{2,4,6,7,8\}$ and $C=\{2,7,8,10,11\}$. Find the following sets
(a) $(A \cup B) \cap C$.
(b) $A \cup(B \cap C)$.
(c) $(A \cap B) \cup(B \cap C)$.
(d) $(A \cup B) \cap(B \cup C)$.
29. Draw these intervals on the real line.
(a) $(0,2) \cup(3,5)$.
(b) $[-2,1] \cup[0,2]$.
(c) $(-\infty, 1) \cup(-1, \infty)$.
(d) $[-1, \infty) \cap(-\infty, 1]$.
(e) $[-2,5] \cap[1,10]$.
(f) $(-2,5) \cap(1,10)$.
30. Draw these intervals on the real line.
(a) $(-\infty, \infty)$.
(b) $[1,1]$.
(c) $(1,1)$.
(d) $[1,2) \cap(2,3]$.
(e) $[1,2] \cap[2,3]$.
31. Write as inequalities.
(a) $(-\infty, 2]$.
(b) $(2, \infty)$.
(c) $(1,5)$.
(d) $[1,5]$.
32. What do you get?
(a) $\mathbb{Q} \cap \mathbb{N}$.
(b) $\mathbb{Z} \cup \mathbb{R}$.
(c) $\mathbb{R} \cap \mathbb{Q}$.
(d) $\mathbb{Z} \cap[-5,5]$.
(e) $\mathbb{Z} \cap(-5,5)$.
(f) $\mathbb{N} \cap(-5,5)$.
33.     - Let $\mathbb{M}=\{-n, n \in \mathbb{N}\}$. Is $\mathbb{M} \cup \mathbb{N}$ the same set as $\mathbb{Z}$ ? If not, what is the difference? What is $\mathbb{M} \cap \mathbb{N}$ ?
34.     - Let $A$ be the set of all integers divisible by 5 . Let $B$ be the set of all integers divisible by 3. Figure out the following...
(a) $A \cup B$.
(b) $A \cap B$.

## Solving equalities and inequalities

35. Solve these inequalites. Draw the solutions on the real line.
(a) $x<5$.
(b) $x<5$ and $x>-1$.
(c) $x<5$ or $x>-1$.
(d) $x \leqslant 5$ and $x \geqslant-5$.
(e) $x \leqslant 5$ or $x \geqslant-5$.
36. Solve for $x$. Express your answer using sets and also drawings on the real line.
(a) $(5 x+1)=6 x-5-(x-5)$.
(b) $(5 x+1)=6 x-5-(x-6)$.
37. Solve for $x$.

$$
a x=0
$$

Where $a$ may be any real number. Give analysis of cases. Use proper mathematical language (if... then...) and give a proper conclusion. Do so for all problems that require analysis of cases. Use set theory to describe your answers: $\mathbb{R},(-\infty, \infty), \varnothing$, etc.
38. Solve for $x$, where $a$ may be any real number: $a x=a$.
39. Solve for $x$, where $a$ can be anything: $a x=x$.
40. Solve for $x: a x=a+1$.
41. Solve for $x$ : $a x=a-1$.
42. Solve for $x: a x=x+1$.
43. Solve for $x$ : $a x=x-1$.
44. Solve for $x: a^{2} x=a+a^{2}$,
45. Solve for $x:(a-1) x=a$.
46. Solve. $(a+1) x=0$. Remember, $a$ can be any real number.
47. Solve for $x:(a-1) x=a^{2}-1$.
48. Solve. $(a+3) x=a^{2}-9$.
49. Solve for $x$ : $\left(a^{2}-4\right)=a^{3}+8$.
50. Solve. $\left(a^{2}-5\right)=a^{3}-125$.
51. Solve for $x:(a-2)(a+3) x=1$.
52. Solve. $(a+2)(a-2) x=a^{2}-4$.
53. Solve. $(a+2)(a-3)=a^{2}-9$.
54. Solve for $x$. $x+3 \leqslant-1$. Draw the solution on the real line. Give the solution as an interval.
55. Solve. Draw. Give interval: $x>x+1$.
56. Solve. Draw. Give interval: $x \leqslant x+1$.
57. Solve for $x$ : $x-3 \leqslant x+2$. Draw solution on real line. Give interval.
58. Solve for $x$ : $x-3 \geqslant x+3$. Draw solution on real line. Give interval.
59. Solve for $x: 2 x-1>5$.
60. Solve for $x$ : $-3 x+1<10$.
61. Solve. $2 x+4<5 x-1$.
62. Show these on the real line: $0,2,-2,1 / 2,-1 / 2$.
63. Show on real line: $\sqrt{2}, 1 / 2,2,-2,1 / \sqrt{2},-\sqrt{2},-1 / \sqrt{2},-1 / 2,-2$.
64. Show on real line: $1,2,3, \sqrt{2}, 1 / \sqrt{2}, \sqrt{3}, 1 / \sqrt{3}$.
65. Solve for $x: \sqrt{2} x+1>\sqrt{3} x-2$. Draw solution on real line. Give interval for solution.
66. Solve. $\sqrt{7} x-1 \leqslant \sqrt{5} x+2$.
67. Solve. Draw. Give interval. $\sqrt{3} x+1 \geqslant 2 x-3$.
68. Solve. Draw. Give interval. $3 x+2<\sqrt{5} x+4$.
69. Let $a>0$. Show 0 and $1 / a$ on the real line.
70. Let $a<0$. Show 0 and $1 / a$ on the real line.
71. Let $a>0$. Show 0 and $a$ on the real line.
72. Let $a<0$. Show 0 and $a$ on the real line.
73. let $a>0$. Draw 0 and $a^{2}$ on the real line.
74. Let $a<0$. Draw 0 and $a^{2}$ on the real line.
75. Let $a<0$. Draw 0 and $1 / a^{2}$ on the real line.
76. Solve for $x: a x>1$, where $a$ can be any number. Analyze all cases. Write a conclusion. Use mathematical language (if... then....) Explain what you are doing. Draw the solutions on the real line. Give solutions as intervals.
77. Solve for $x$, draw, give intervals: $a x<1$.
78. Solve for $x$, draw, give intervals: $a^{2} x \geqslant 0$.
79. Solve for $x$, draw, give intervals: $a^{3} x \leqslant 0$.
80. Solve, draw, give intervals. $(a-3)^{2} x>1$.
81. - Solve, draw, give intervals. $(a-3)^{3} x<1$.

## Systems of inequalities

82. Show these numbers on the real line: $\pi . \pi / 2,1,2,3,4,10, \pi^{2}$.
83. Show these numbers on the real line: $0,1,2,3,4,-1,-2,-3,-4, \pi,-\pi, \pi / 2,-\pi / 2$.
84. Show these numbers on the real line: $0,1,2,3,4, \sqrt{2}, \sqrt{3} \sqrt{5}, \sqrt{7}, \sqrt{10}$.
85. Solve this system, draw the solution on the real line and give the solution as intervals.

$$
x<3 ; \quad-3 x<9
$$

86. Solve. Draw. Give intervals. Remember that the solution of a system of two equations makes both of them true.

$$
2 x \geqslant 4 ; \quad x \geqslant 2
$$

87. Solve for $x$. Draw. Give intervals.

$$
-2 x=\pi ; \quad-x<1.8
$$

88. Solve for $x$. Draw. Give intervals.

$$
\pi-2 x<0 ; \quad-\sqrt{3}-x>0
$$

89. Solve. Draw. Write solution as a set.

$$
6-2 x \geqslant 10 ; \quad x \in \mathbb{N} .
$$

90. Solve. Draw. Give solution as a set.

$$
2 x+10>-10 ; \quad 10-2 x>5 ; \quad x \in \mathbb{Z}
$$

91. Solve. Draw. Give solution as a set.

$$
x-2 \pi<3 x ; \quad-x>-\sqrt{5} ; \quad x \in \mathbb{Z}
$$

## Absolute value

92. Fill in the table.

| Transformation | What does it do? |
| :---: | :---: |
| $y \rightarrow y-1$ |  |
| $x \rightarrow x-1$ |  |
| $y$ | $\rightarrow y+1$ |
| $x$ | $\rightarrow x+1$ |

93. Plot the straight line $y=x+3$. Draw before and after pictures. Start with the basic straight line $y=x$. Do the correct transformation. Draw the result. Label the axes and the lines.
94. Plot $y+1=x-2$ by starting with the line $y=x$ and doing two transformations. Next, plot the line $y=x-3$ by starting with $y=x$ and doing one transformation. Are they the same?
95. Plot these lines on the same axes by transforming $x$.

$$
y=x-3 ; \quad y=x-1 ; \quad y=x ; \quad y=x+1 ; \quad y=x+3
$$

96. Plot these lines on the same axes by transforming $y$.

$$
y-3=x ; \quad y-1=x ; \quad y=x ; \quad y+1=x ; \quad y+3=x
$$

97. Plot $y=|x+2|$ by transforming $x$.
98. Plot $y-1=|x+2|$ by transforming $x$ and $y$.
99. Plot $y=|x-1|+2$ by transforming $x$ and $y$.
100. Plot the lines $y=2$ and $y=-2$ on the same axes.
101. Solve $|x|=2$. First plot $y=|x|$ and $y=2$ on the same axes. Use your drawing to figure out how many solutions there should be. Next, find the solutions by using the definition of absolute value.
102. Solve $|x|=0$. First plot $y=|x|$ and $y=0$ on the same axes. Find the solutions by using the definition of absolute value (if... then...).
103. Solve $|x|=-2$. First plot $y=|x|$ and $y=0$ on the same axes. Show that there are no solutions by using the definition of absolute value.
104. •. Solve for $x$ :

$$
|x|=a
$$

where $a$ can be any number. You will have to analyze different cases for $a$. For each case draw plots and then find solutions for $x$ if there are any.
105. Solve for $x$ :

$$
|x-3|=1
$$

Draw plots of $y=|x-3|$ and $y=1$. Solve using the definition of absolute value.
106. Solve for $x$ :

$$
|x+2|=3 .
$$

Draw plots of $y=|x+2|$ and $y=3$. Solve using the definition of absolute value.
107. •. Solve for $x$ :

$$
|x-1|=a
$$

where $a$ can be any number. Analyze different cases for $a$. For each case draw plots for $y=|x-1|$ and $y=a$. Explain how many solutions there should be. Find them using the definition of absolute value.
108. Plot these on the same axes.

$$
y=-x, \quad y=-(x+1), \quad y=-(x-1)
$$

109. Use plots to show that

$$
|x+a|=1
$$

always has two solutions no matter whether $a>0, a=0$ or $a<0$. Use logical analysis to find the two solutions.
110. Use plots and show that $|x-a|=3$ always has two solutions no matter what $a$ is. Find the two solutions using logical analysis.
111. Plot these on the same axes.

$$
y=-x, \quad y=-2-x, \quad y=2-x .
$$

112. Plot and solve.

$$
|x+1|=-(x-1)
$$

113. Plot and solve. Make sure your logical analysis matches what you see in the plots.

$$
|x-1|=x+1
$$

114. Use plots to determine how many solutions this has and find the solutions using logical analysis.

$$
|x+2|=x+2
$$

115. Plot and solve using logical analysis.

$$
|x-2|=2-x
$$

Remember: your logical analysis must match what you see on your plots. Let the plots guide you to doing it correctly.

