
Rational Geometry with Racket
Ted Szylowiec

1 Developing the module

1.1 What’s this about?

There are several software applications for inter-
active geometry. However, the one we are going
to write ourselves serves to teach both geometry
and computer programming. This simple geometry
module, developed in Racket, can be used to study
some surprisingly complicated and interesting two-
dimensional problems. These problems are studied
by typing interactively into the Racket REPL. The
user sees the intermediate results of his reasoning
and calculations. This assists learning and problem
exploration. Besides that, I have found this geometry
module to be an handy tool for designing problems,
examples and examination questions.

From the perspective of computer science, this
project gives the student an approachable introduc-
tion to software design. Rational Geometry with
Racket was a one-semester topic taught to high
school students. This article is a summary (with ex-
tensions and improvements) of what we did. What
this article doesn’t cover are the introductions to
both the Racket language and to the mathematics of
2D analytic geometry. There is also a prerequisite of
basic computer literacy: how to open and edit files,
how to save your work, how to download and install
applications, how to run something in the terminal.
This latter prerequisite is not exactly trivial because
(as I discovered) many students cannot meet it, de-
spite years of studying computers in school. It’s up
to the teacher to cover all this too.

If you haven’t installed Racket yet, go to https://
racket-lang.org, download the system and install
it. The installation is painlessly simple. You should
be up and running in 5 minutes.

The rational geometry module begins the way
most Racket modules begin: with some comments
and #lang racket.

;; rational-geometry.rkt
;;
;; Geometry of points and lines using Racket.

#lang racket

Type this into a file called rational-geometry.rkt
and save it. We will proceed to add code into this
file and build our module.

1.2 Points and lines

The two fundamental geometrical objects that we are
concerned with are two-dimensional points and two-
dimensional lines. We will use the notation (x, y) for
points and [l, m, n] for lines, where the triple [l, m, n]
represents the line equation

lx + my + n = 0.

A(3, 2) is shorthand, meaning that point A is at
coordinate (3, 2). A good way to represent points
and lines in code is to use structs. Computation
with structs is fast and efficient. Points and lines
are things having internal structure and independent
identity. Structs reflects this.

(struct point (x y) #:transparent)
(struct line (l m n) #:transparent)

When you create structs this way, a number of other
functions are created for you. Accessor functions al-
low you to get the components inside the stuct.

> (define a (line 1 2 3))
> (line-m a)
2
> (define P (point 4 -7))
> (point-y P)
-7

Racket also creates predicate functions that test
whether or not something is this type or that type
of struct.

> (point? a)
#f
> (line? a)
#t
> (point? P)
#t
> (line? P)
#f

The predicate equal? compares structs in a simple
element-by-element manner. Sometimes this is ap-
propriate (it’s fine for points), but other times it is
not what we want (it’s not fine for comparing lines.)

1

2 Developing the module

> (define Q (point 4 -7))
> (define R (point -3 8))
> (equal? Q P)
#t
> (equal? Q R)
#f

It’s not that simple to compare lines because [l, m, n]
and [kl, km, kn] are the same line. Lines are repre-
sented by equations

lx + my + n = 0

and these equations can be multiplied by any factor.
In order to compare lines, this must be taken into
account. Two lines [l, m, n] and [l′, m′, n′] are equal if
the following conditions hold:

lm′ −ml′ = 0
mn′ − nm′ = 0
ln′ − nl′ = 0.

In code,

(define (line-equal? line1 line2)
(let ((l1 (line-l line1))

(m1 (line-m line1))
(n1 (line-n line1))
(l2 (line-l line2))
(m2 (line-m line2))
(n2 (line-n line2)))

(and (= 0 (det l1 m1 l2 m2))
(= 0 (det m1 n1 m2 n2))
(= 0 (det l1 n1 l2 n2)))))

Notice the repetetive code in the let expression. If
we don’t do something about this now, our geometry
module will become full of code like that. To the res-
cue is Racket’s pattern-matcher. Instead of picking
apart components of points and lines using accessor
functions, we do it all in one shot using match-let.

(define (line-equal? line1 line2)
(match-let (((line l1 m1 n1) line1)

((line l2 m2 n2) line2))
(and (= 0 (det l1 m1 l2 m2))

(= 0 (det m1 n1 m2 n2))
(= 0 (det l1 n1 l2 n2)))))

That looks much better.

1.3 Joining lines

Two lines can be joined to make a point. Cramer’s
method is a good way to find this intersection point.
Besides that, Cramer’s technique can be applied to

countless other problems, so it is worth learning un-
til a student can use it to solve linear equations with
their eyes closed. It’s also a very elegant idea and
translates well into Racket code.

To solve this system:

lx + my + n = 0
l′x + m′y + n′ = 0

Compute the system determinant D

D =

∣∣∣∣ l m
l′ m′

∣∣∣∣
and the x and y determinants

Dx =

∣∣∣∣−n m
−n′ m′

∣∣∣∣ , Dy =

∣∣∣∣ l −n
l′ −n′

∣∣∣∣ .

The solution x, y is

x =
Dx

D
, y =

Dy

D
.

Determinant is defined as a seperate function so it
can be used in many places in the module.

(define (det a b c d)
(- (* a d)

(* b c)))

(define (join-lines a b)
(match-let (((line al am an) a)

((line bl bm bn) b))
(let ((D (det al am bl bm))

(Dx (det (- an) am (- bn) bm))
(Dy (det al (- an) bl (- bn))))

(point (/ Dx D)
(/ Dy D)))))

1.4 Joining points

Two points define a line. If we begin with the canon-
ical equation for a line,

lx + my + n = 0

we see that there are three variables to solve for: l,
m, n, but only two points are given. One idea is to
divide the line equation by n, giving an equation in
two unknowns:

l
n

x +
m
n

y + 1 = 0.

Set p = l/n, q = m/n. This equation must be sat-
isfied at both of the given points A(x1, y1), B(x2, y2),
which yields two equations in two unknowns:

px1 + qy1 + 1 = 0
px2 + qy2 + 1 = 0.

Prettification 3

We can solve for p and q by Cramer’s method:

Dp =

∣∣∣∣−1 y1
−1 y2

∣∣∣∣ , Dq =

∣∣∣∣x1 −1
x2 −1

∣∣∣∣ , D =

∣∣∣∣x1 y1
x2 y2

∣∣∣∣ .

And now p = Dp/D, q = Dq/D and our line is
[p, q, 1]. But there is a problem with this method.
What if the line goes through the origin? In this case,
n = 0, and this method won’t work due to division
by zero. However, by examining

p =
l
n
=

Dp

D
, q =

m
n

=
Dq

D
it’s clear that l, m, n can be identified with Dp, Dq
and D. So we don’t actually have to perform any
divisions. Once the determinants are computed, we
have the components of the line we are looking for:

[l, m, n] = [Dp, Dq, D].

(define (join-points A B)
(match-let (((point x1 y1) A)

((point x2 y2) B))
(let ((Dp (det -1 y1 -1 y2))

(Dq (det x1 -1 x2 -1))
(D (det x1 y1 x2 y2)))

(line Dp Dq D))))

1.5 Prettification

As we will see, computations in rational geometry
often leads to formidable fractions. We would prefer
to avoid them if we can. For points, we have no
choice but to live with big fractions, unless we resort
to homogeneous coordinates. But in the case of lines,
we can improve their appearance. This is because
a line tuple [l, m, n] can be multiplied by any factor
and remain the same line. Denominators of fractions
can be eliminated in lines.

(define (eliminate-fractions myline)
(match-let (((line l m n) myline))

(let ((dl (denominator l))
(dm (denominator m))
(dn (denominator n)))

(let ((d (* dl dm dn)))
(line (* d l)

(* d m)
(* d n))))))

Common factors should be eliminated wherever
possible. There’s no need to carry around [44, 88, 33]
when [1, 8, 3] will do.

(define (eliminate-factors myline)
(match-let (((line l m n) myline))

(let ((g (gcd l m n)))
(line (/ l g) (/ m g) (/ n g)))))

Likewise, eliminate excess negative numbers from
lines. Better to use [1, 1, 1] instead of [−1,−1,−1].

(define (neg1 x)
(if (< x 0) 1 0))

(define (count-negatives l m n)
(+ (neg1 l)

(neg1 m)
(neg1 n)))

(define (fix-negatives myline)
(match-let (((line l m n) myline))

(if (< (count-negatives l m n) 2)
myline
(line (- l) (- m) (- n)))))

These cosmetic effects are not really necessary. But
they do make the end user’s experience a little better.
The complete prettification function is built from the
smaller components defined above.

(define (prettify myline)
(fix-negatives
(eliminate-factors
(eliminate-fractions myline))))

The function join-points does its job but does not
prettify its results. To make things convenient for
the user, we create a universal join function that
handles both points and lines, and prettifies its re-
sult when returning a line. This is accomplished by
using the predicates point? and line? that Racket
created for us.

(define (join U V)
(cond ((and (point? U)

(point? V))
(prettify (join-points U V)))

((and (line? U)
(line? V))

(join-lines U V))
(else

(error
’join
"Cannot join arguments."))))

This function is the backbone of the rational geome-
try module.

1.6 Concurrent and collinear

Three lines are concurrent when they are on the
same point.

4 Developing the module

[l, m, n]

[l′, m′, n′]

[l′′, m′′, n′′]

If (x, y) are the coordinates of the point of concur-
rency, then the following equations must hold:

lx + my + n = 0
l′x + m′y + n′ = 0
l′′x + m′′y + n′′ = 0

Since we have three equations in only two unknowns
x and y, it must be that one of these equations is a
linear combination of the other two. This happens
when the determinant of the coefficients is zero:∣∣∣∣∣∣

l m n
l′ m′ n′

l′′ m′′ n′′

∣∣∣∣∣∣ = 0.

This is the condition for three lines to be concurrent.
We define a seperate det3 function so that it can be
used in other contexts.

(define (det3 a b c d e f g h i)
(+ (* a (det e f h i))

(* -1 b (det d f g i))
(* c (det d e g h))))

(define (concurrent? a b c)
(match-let (((line al am an) a)

((line bl bm bn) b)
((line cl cm cn) c))

(= 0 (det3 al am an
bl bm bn
cl cm cn))))

A condition for collinearity of points can be dis-
covered by examining the area of a triangle. Con-
sider triangle ABC.

A(x1, y1)

B(x2, y2)

C(x3, y3)

The are S of ABC can be computed by the remark-
able formula

S =
1
2

(∣∣∣∣x1 y1
x2 y2

∣∣∣∣+ ∣∣∣∣x2 y2
x3 y3

∣∣∣∣+ ∣∣∣∣x3 y3
x1 y1

∣∣∣∣) .

If the verticies are taken in the counter-clockwise di-
rection then S will be positive. If clockwise, S will
be negative. This formula is worth knowing because
it is easily remembered and it can also be extended
to polygons with more verticies. The det function is
reused to write triangle-area.

(define (triangle-area A B C)
(match-let (((point Ax Ay) A)

((point Bx By) B)
((point Cx Cy) C))

(* 1/2
(+ (det Ax Ay Bx By)

(det Bx By Cx Cy)
(det Cx Cy Ax Ay)))))

Now let’s use the idea of triangle area to derive
a condition for collinearity of points. By using the
determinant property∣∣∣∣a b

c d

∣∣∣∣ = − ∣∣∣∣c d
a b

∣∣∣∣
it is easy to verify that the S formula is equivalent to
the following 3-by-3 determinant:

S =
1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .

Three points are collinear when they are on the same
line.

A(x1, y1)
B(x2, y2)

C(x3, y3)

But if three points were not collinear, then they
would form a triangle with nonzero area. So intu-
itively we arrive at the condition that three points
are collinear if ∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0

Written in terms of 3-by-3 determinants, the con-
ditions for concurrency of lines and collinearity of
points are both beautiful and easy to remember.
Reusing det3, we have:

Adding features 5

(define (collinear? A B C)
(match-let (((point Ax Ay) A)

((point Bx By) B)
((point Cx Cy) C))

(= 0 (det3 Ax Ay 1
Bx By 1
Cx Cy 1))))

2 Adding features

We are finished the basic functionality of the rational
geometry module. As it stands, it can be used to
study non-metrical or projective types of geometry
problems. But we can make it more powerful and
more user-friendly by adding some features.

It is often necessary to compute the slope of a line.
This can be done from scratch every time by using
accessor functions. But why not simply build this
common task into the geometry module? While we
are at it, it is very handy to have a function that com-
putes the slope perpendicular to a given line. We call
this anti-slope.

(define (slope a)
(let ((al (line-l a))

(am (line-m a)))
(- (/ al am))))

(define (anti-slope a)
(- (/ (slope a))))

Other features that we should have: ways of comput-
ing ranges and pencils, and a procedure to compute
that most interesting geometrical quantity: the an-
harmonic ratio.

2.1 Ranges and pencils

A common task in geometry is to construct a range
of points on a line. The line can be defined by two
base points A and B. Given A and B, we would
like to generate points M, M′, M′′ wherever we need
them.

A(−3, 1)
B(9

7 ,− 1
4)M

M′
M′′

One method is proportional division. Given propor-
tions a, b, where must we place M such that seg-
ment AB is divided according to the proportions
AM : MB = a : b?

A
M B

a b

Using the notation of boldface letters to denote point
tuples, the coordinates of point M can be expressed
as a linear combination of the coordinates of A and
B:

M =
bA + aB

b + a
.

Where M = (Mx, My) and so on. Dividing through
by b and substituting k = a/b we obtain the segment
division formula:

M =
A + kB
1 + k

.

If you experiment with this formula you will quickly
see that when k is positive, the point M will be in
between A and B, and when k is negative, M will lie
outside the segment AB.

At first it may be hard to see exactly how k
parametrizes the position of M. It helps to imagine
line AB as actually being a circle of infinte radius,
having regions where k is positive or negative.

A B
k = 1

0 < k < ∞

k = −1

−1 < k ≤ 0 −∞ < k < −1

The point corresponding to k = 1 is the midpoint
of AB, while the point corresponding to k = −1 is
the exterior midpoint of AB, which is the point at
infinity. Points corresponding to positive values of k
lie in between A and B, while points corresponding
to negative k lie to the left of A or to the right of B.

We will use a higher-order function to build ranges.
A higher-order function is a function that returns an-
other function. This is quite useful in practice be-
cause it allows us to make a range function once
from base points A and B, and then use this func-
tion many times to make however many points M,
M′, M′′ we need by passing in values of k.

(define (make-range A B)
(match-let (((point Ax Ay) A)

((point Bx By) B))
(lambda (k)

6 Adding features

(let ((a (+ 1 k)))
(point (/ (+ Ax (* k Bx)) a)

(/ (+ Ay (* k By)) a))))))

That’s all there is to it. For a demonstration, we cre-
ate the points M, M′, M′′ given A, B as in the earlier
figure. Define the base points A, B:

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define A (point -3 1))
> (define B (point 9/7 -1/4))

Create the range function and define some division
ratios.

> (define r (make-range A B))
> (define k -1/3)
> (define k1 3/2)
> (define k11 -3)

Construct the required points.

> (define M (r k))
> (define M1 (r k1))
> (define M11 (r k2))
> (values M M1 M11)
(point -36/7 13/8)
(point -3/7 1/4)
(point 24/7 -7/8)

We know how to construct ranges, which are
many points on a line, what about constructing
many lines on a point? These are called pencils.

S(−2, 0)

6
7

1
3

− 1
5

− 5
7

It’s possible to construct pencils in a way analogous
to what we did for ranges. But if so, k no longer has
a simple interpretation in terms of ratios or propor-
tions. Instead, we will choose lines from a pencil by
specifying their slopes. Suppose the pencil center is
at (x0, y0). From the equation of slope:

y− x0

x− x0
= k.

Writing this in the canonical line form gives

−kx + y + kx0 − y0 = 0

or
[−k, 1, kx0 − y0].

As with make-range, the make-pencil procedure re-
turns a function of k. But this time k is the slope of
the desired line.

(define (make-pencil M)
(match-let (((point Mx My) M))

(lambda (k)
(prettify (line (- k)

1
(- (* k Mx)

My))))))

Here is how you would construct the lines in the
figure.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define S (point -2 0))
> (define penS (make-pencil S))
> (define a (penS 6/7))
> (define b (penS 1/3))
> (define c (penS -1/5))
> (define d (penS -5/7))
> (values a b c d)
(line 6 -7 12)
(line 1 -3 2)
(line 1 5 2)
(line 5 7 10)

2.2 The anharmonic ratio

Consider two base points A and B as in the figure
below. What if there are two points of division M and
M′? Then there would be two division ratios: one
corresponding to M and the other corresponding to
M′. Call these ratios k and k′. It doesn’t matter if M
and M′ are inside or outside the segment AB.

A BM M′

A natural thing to do is to form the quantity k/k′. It
turns out that this quantity has almost magical prop-
erties. Entire books have been written about it. It
goes by the name anharmonic ratio or cross-ratio and
the usual symbol given to it is (ABMM′).

Expressing k and k′ in terms of segment propor-
tions gives the definition for anharmonic ratio:

(ABMM′) =
k
k′

=
AM/MB

AM′/M′B
.

Packaging the library 7

Since it is easy to remember the definition for divi-
sion ratio k, it is also easy to remember this definition
of anharmonic ratio. Division ratio can be obtained
by solving

M =
A + kB
1 + k

for k. In practice we only need either the x-
coordinates of these points, or the y-coordinates. We
choose the x-coordinates for our code. In doing so
we hope that the points A, B, M do not lie on a vert-
cal line! In Racket code, anharmonic-ratio is built
from division-ratio. Both are useful functions, so
it makes sense to separate them.

(define (division-ratio A B M)
(if (collinear? A B M)

(let ((Mx (point-x M))
(Ax (point-x A))
(Bx (point-x B)))

(/ (- Mx Ax) (- Bx Mx)))
(error ’division-ratio

"A B M must be collinear")))

(define (anharmonic-ratio A B M M1)
(/ (division-ratio A B M)

(division-ratio A B M1)))

2.3 Packaging the library

What functions and symbols from our module
should be made available to the user? Surely there
are things in rational-geometry that the user does
not need to see, such as the functions joint-points
and join-lines. We want the user to use the univer-
sal join function instead. Controlling what the user
has access to in our module is done with provide:

(provide ...
...
...)

If we want the user to use something defined in the
module, we put it in provide. Certainly the user
needs point and line structs, so these belong in
provide. But the user also needs all the functions
associated with point and line structs, such as the
accessors point-x, line-l, etc., and the predicates
point? and line?. Racket has a simple mecha-
nism, struct-out for providing everything associ-
ated with a struct:

(provide (struct-out point)
(struct-out line))

A function like det3 is useful on its own, so we def-
initely want to provide it to the user. What we don’t

want to provide are the point and line joining func-
tions. We want the user to use only join, which,
in addition to being more convenient, prettifies its
results. Also, experimental functions or things that
may have been defined for the purpose of testing
should not be provided. Those details are best kept
away from the users of our geometry module.

(provide (struct-out point)
(struct-out line)
line-equal?
det
det3
prettify
join
concurrent?
collinear?
triangle-area
slope
anti-slope
make-pencil
make-range
division-ratio
anharmonic-ratio)

The geometry module is ready to use.

3 Problem solving in the REPL

REPL stands for read-eval-print loop. This is where the
user interacts with Racket. The three most popular
ways to use the Racket REPL is through DrRacket,
Emacs, or the terminal. For this project, we will sim-
ply use the terminal.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
>

We are now in the REPL and all our provided mod-
ule functions are ready to be used. To quit the REPL,
use <ctrl-D>.

3.1 Pappus points are collinear

Given two lines a and b, choose any three points A,
B, C on line a, and any three points A′, B′, C′ on line
b. These points can be joined in a special way to de-
fine three points P, P′ and P′′ which we call Pappus
points, after the ancient Greek mathematician. Pap-
pus points are very interesting because they always
lie along a straight line.

8 Problem solving in the REPL

A(−3, 1)
B(− 3

4 , 7
4)

C

A′(−3,−2)
B′(0,− 11

4)
C′

P P′ P′′

a

b

We are given A, B and A′, B′. Choose points C
and C′, determine the resulting Pappus points, and
show that they are collinear.

Choosing C and C′ is easy to do with make-range.
To place C to the right of segment AB, choose k in
the interval −∞ < k < −1. It’s convenient to choose
k = −2.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define A (point -3 1))
> (define B (point -3/4 7/4))
> (define r (make-range A B))
> (r -2)
(point 3/2 5/2)
> (define C (r -2))

Do the same for C′.

> (define A1 (point -3 -2))
> (define B1 (point 0 -11/4))
> (define r1 (make-range A1 B1))
> (r1 -2)
(point 3 -7/2)
> (define C1 (r1 -2))

Construct the Pappus points by joining pairs of
points into lines, then joining pairs of lines into
points.

> (define P (join (join A B1)
(join A1 B)))

> (define P1 (join (join A C1)
(join A1 C)))

> (define P11 (join (join B C1)
(join B1 C)))

Let’s have a look at these Pappus points.

> (values P P1 P11)
(point -69/35 -2/7)
(point -9/7 -2/7)
(point 69/98 -2/7)

Do P, P′, P′′ lie on a straight line?

> (collinear? P P1 P11)
#t

Yes!

3.2 Perspective Pappus line is concurrent

Something even more interesting happens when the
points A, B, C and A′, B′, C′ are in perspective. In
this case, the line p through the Pappus points P, P′,
P′′ will be concurrent with the two given lines.

S

[7, 2, 13]

[6, 7,−10]

A′

B′

C′

A

B
C

p

The given lines are [7, 2, 13] and [6, 7,−10]. Choose a
center of perspective S and construct points on these
lines that are related by perspective, as shown in the
figure. Construct Pappus points and the Pappus line
p. Verify that the resulting Pappus line is concurrent
with the two given lines.

Begin by defining the given lines and choosing a
place to put S, which can be anywhere.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define m (line 7 2 13))
> (define n (line 6 7 -10))
> (define S (point 3 3))

A pencil of lines on S determines the perspective
relationship of points on the given lines. We can
choose suitable perspective lines from the pencil on
S by specifying their slopes.

> (define penS (make-pencil S))
> (define perspective1 (penS 1/4))
> (define perspective2 (penS 2/3))
> (define perspective3 (penS 3/2))

Use these perspective lines to find points A, B, C and
A′, B′, C′:

Altitude, angle bisector, median 9

> (define A (join perspective1 n))
> (define B (join perspective2 n))
> (define C (join perspective3 n))
> (define A1 (join perspective1 m))
> (define B1 (join perspective2 m))
> (define C1 (join perspective3 m))

Let’s have a look at these points.

> (values A B C)
(point -23/31 64/31)
(point 9/32 19/16)
(point 41/33 4/11)
> (values A1 B1 C1)
(point -7/3 5/3)
(point -9/5 -1/5)
(point -1 -3)

Find the Pappus points by joining pairs of points into
lines and then joining pairs of lines.

> (define P (join (join A1 B)
(join A B1)))

> (define P1 (join (join C1 A)
(join C A1)))

> (define P11 (join (join C1 B)
(join B1 C)))

> (values P P1 P11)
(point -537/517 739/517)
(point -121/153 169/153)
(point -15/343 43/343)

The Pappus points should be collinear.

> (collinear? P P1 P11)
#t

The Pappus line is the join of any two of these points.
Verify that the Pappus line is concurrent with the
given lines.

> (define p (join P P11))
> p
(line 443 338 -23)
> (concurrent? m p n)
#t

Incidentally, what is the point of concurrency?

> (join m n)
(point -3 4)

We are done.

3.3 Altitude, angle bisector, median

Consider three lines connected with triangles: the
angle bisector, the median line, and the altitude line.
Let M be the point where the median line from A
cuts side BC. Let M′ be where the angle bisector at
A cuts the side BC, and let M′′ be the point where
the perpendicular altitude from A cuts BC.

A

B

C

MM′M′′

Here is an interesting phenomenon: the angle bisec-
tor point M′ is always in between the altitude point
M′′ and the median point M.

Using the functions in our geometry module, how
would we compute angle bisectors? Consider trian-
gle ABC in the following figure and let a and b be
the side lengths CB and AC respectively.

A

B

C

X

b

a

It can be shown that ∠ACX and ∠XCB are equal
precisely when the proportion AX : XB equals the
proportion b : a. In other words, point X can be
computed by proportional division

X =
A + kB
1 + k

by setting

k =
AX
XB

=
b
a

.

Reflecting on this for a moment, it becomes clear
that, for the case of a general triangle, we cannot
compute X this way with the tools we presently have
in our module, because we have no way of comput-
ing distance. It’s not difficult to add a function that
computes distance, but this will introduce irrational

10 Problem solving in the REPL

numbers like
√

2. It is not clear how we should deal
with them at this point.

However, it is possible to examine specific in-
stances of this phenomenon where the side lengths a
and b happen to be computable without the distance
formula. This is the case when angle ACB is a right
angle, and sides CA, CB are aligned parallel to the x
and y axes:

A(1, 1) B(5, 1)

C(1, 3)

M
M′

M′′

Given A, B, C as above, compute the median line, the
altitude line and the angle bisector line. Verify that
the angle bisector point is in between the median
and altitude points.

Begin by defining the given points in the Racket
REPL.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define A (point 1 1))
> (define B (point 5 1))
> (define C (point 1 3))

The median line at A goes from A to the midpoint of
CB. Midpoints can be computed using make-range
with k set to 1.

> (define r (make-range C B))
> (define M (r 1))
> M
(point 3 2)
> (define median-line (join A M))
> median-line
(line 1 -2 1)

Our median line is [1,−2, 1]. To construct an altitude
line from point A, first define a pencil of lines on A.
Then choose the line which has a slope perpendic-
ular to line CB. To do that, we use the anti-slope
function.

> (define penA (make-pencil A))
> (define CB (join C B))
> (define altitude-line

(penA (anti-slope CB))

Let’s pause for a moment to check that the altitude
line really is perpendicular to line CB. If the slope
of the altitude line is k, then the slope of CB must be
−1/k.

> altitude-line
(line -2 1 1)

> (slope altitude-line)
2
> (slope CB)
-1/2

As we expect. Now for the altitude point M′′:

> (define M11 (join altitude-line CB))
> M11
(point 9/5 13/5)

The lengths of the sides AB and AC can be eas-
ily read off the diagram for this particular triangle.
Therefore we can apply the technique of propor-
tional division, as explained above, to find the angle
bisector line. The side AC has length 2 and the side
AB has length 4. So the proportion that defines M′

is 2 : 4 along segment CB.

> (define r (make-range C B))
> (define M1 (r 2/4))
> M1
(point 7/3 7/3)

Points M, M′, M′′ should be collinear.

> (collinear? M M1 M11)
#t

Finally, we want to show that M′ is in between M′′

and M. How can we do that? Consider two points A
and B another point M that divides AB proportion-
ally according to some ratio k. If k is negative, then
M lies either to the left or to the right of segment AB.
But if k is positive, then M is in between A and B.

A
B

−1 ≤ k < 0
0 ≤ k < ∞

−∞ < k ≤ −1

The module function division-ratio finds k given
A, B and M. If (division-ratio A B M) is positive,
then M is in between A and B. It remains to care-
fully place the altitude point, the median point and
the angle bisector point into the proper argument
positions for division-ratio:

> (division-ratio M11 M M1)
4/5

k is positive, therefore M′ is in between M′′ and M.

Side bisectors are concurrent 11

3.4 Side bisectors are concurrent

For the following triangle, demonstrate that the side
bisectors are concurrent.

A

B

C

[−2, 9, 1]

[2, 7, 15] [−2, 1, 9]M

M′
M′′

In this problem, we are given the lines that form the
sides of the triangle. We see from this figure that
sometimes the point of concurrency can be outside
the triangle. Our strategy will be to calculate the
midpoints of each side, then construct perpendicu-
lar lines on the midpoints using pencils. Begin by
defining the lines that make up the sides of the tri-
angle and use join to find the verticies.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define AC (line -2 9 1))
> (define AB (line 2 7 15))
> (define BC (line -2 1 9))
> (define A (join AC AB))
> (define B (join AB BC))
> (define C (join AC BC))
> (values A B C)
(point -4 -1)
(point 3 -3)
(point 5 1)

Now find the midpoints. The expression
(make-range X Y) is actually a function because
make-range returns functions of k. Therefore we can
call the result of this expression without using any
intermediate definitions as if it was a function, be-
cause it is, in fact, a function. This idea is called
anonymous functions. We are using functions created
by make-range without giving them explicit names.

> (define M ((make-range A B) 1))
> (define M1 ((make-range B C) 1))
> (define M11 ((make-range A C) 1))
> (values M M1 M11)
(point -1/2 -2)
(point 4 -1)
(point 1/2 0)

Likewise make-pencil returns functions of slope. If
we want to, we can call these functions anonymously
without using intermediate definitions.

> (define b
((make-pencil M)

(anti-slope (join A B))))
> (define b1

((make-pencil M1)
(anti-slope (join B C))))

> (define b11
((make-pencil M11)

(anti-slope (join A C))))
> (values b b1 b11)
(line -14 4 1)
(line 1 2 -2)
(line 18 4 -9)

Are the perpendicular bisector lines b, b′, b′′ concur-
rent?

> (concurrent? b b1 b11)
#t

Yes!

3.5 Medians are concurrent

Not only are median lines always concurrent, there
is an interesting surprise waiting at the end of this
problem. We want to use our geomentry module to
verify that median lines are concurrent for the fol-
lowing triangle.

A(−4,−1)

B(3,−4)

C(2, 1)

M

M′

M′′

Begin by defining symbols for the given points.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define A (point -4 -1))
> (define B (point 3 -4))
> (define C (point 2 1))

To compute midpoints, we will again call the func-
tions created by make-range anonymously as we did
in the previous problem.

> (define M ((make-range B C) 1))
> (define M1 ((make-range A C) 1))
> (define M11 ((make-range A B) 1))

12 Problem solving in the REPL

> (values M M1 M11)
(point 5/2 -3/2)
(point -1 0)
(point -1/2 -5/2)

Now construct the median lines and verify that they
are concurrent.

> (define AM (join A M))
> (define BM1 (join B M1))
> (define CM11 (join C M11))
> (values AM BM1 CM11)
(line 1 13 17)
(line 1 1 1)
(line -7 5 9)
> (concurrent? AM BM1 CM11)
#t

As expected. But examine the median lines in the
figure. They all seem similar. The point of concur-
rency, X, seems to divide each median line in a sim-
ilar way. We can make this observation more precise
by using division-ratio.

> (define X (join AM BM1))
> X
(point 1/3 -4/3)
> (division-ratio A M X)
2
> (division-ratio B M1 X)
2
> (division-ratio C M11 X)
2

Interesting! The point of concurrency X divides each
median line in a 2 : 1 proportion. Another way to say
this is that X trisects each median line. It turns out
this isn’t merely true for our particular triangle. It
can be proved in general for all triangles using the
methods of elementary geometry.

3.6 Altitudes are concurrent

The sides of the triangle are given. Verify that the
altitudes are concurrent.

A

B

C

[−1, 7, 17]

[1,−1, 1]

[2, 1,−4]

M

M′

M′′

It turns out that we don’t actually need to find the
points M, M′, M′′. All we need are the verticies
of the triangle. The concurrency of the altitude
lines can then be elegantly demonstrated by using
make-pencil and anti-slope.

Define symbols for the given lines and find the
verticies.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define AC (line -1 7 17))
> (define BC (line 2 1 -4))
> (define AB (line 1 -1 1))
> (define A (join AC AB))
> (define B (join AB BC))
> (define C (join AC BC))
> (values A B C)
(point -4 -3)
(point 1 2)
(point 3 -2)

Create pencils on each vertex, and from each pencil
select the line that is perpendicular to the opposite
side. This time we will give explicit names to the
functions created by make-pencil.

> (define penA (make-pencil A))
> (define penB (make-pencil B))
> (define penC (make-pencil C))
> (define a (penA (anti-slope BC)))
> (define a1 (penB (anti-slope AC)))
> (define a11 (penC (anti-slope AB)))
> (values a a1 a11)
(line -1 2 2)
(line 7 1 -9)
(line 1 1 -1)

Are the altitude lines a, a′, a′′ concurrent?

> (concurrent? a a1 a11)
#t

Of course they are!

3.7 Area of extended triangle

Consider the triange ABC in the figure below. Ex-
tend each side in the counterclockwise direction by
1/3, making the larger triangle A′B′C′. We are given
A(−2, 4), B(1,−1) and C(4, 5). What is the ratio of
the areas of the two triangles?

Constructing harmonic points 13

A

B

C

A′

B′

C’

The extension points A′, B′, C′ can be found by
proportional division, but we must be a bit careful.

A
B M

3
1

Here M extends segment AB by a third. The pro-
portions are AM : MB = 4 : −1, giving a division
ratio of k = AM/MB = −4. The triangle sides in
the figure can be extended in the required manner
by using make-range with k = −4.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define A (point -2 4))
> (define B (point 1 -1))
> (define C (point 4 -5))
> (define A1 ((make-range C A) -4))
> (define B1 ((make-range A B) -4))
> (define C1 ((make-range B C) -4))
> (values A1 B1 C1)
(point -4 7)
(point 2 -8/3)
(point 5 -19/3)

The ratio of the area of the triangles can now be com-
puted.

> (/ (triangle-area A1 B1 C1)
(triangle-area A B C))

7/3

An interesting project would be to study this ratio
for different triangles, and then for different values
of k. What can you discover?

3.8 Constructing harmonic points

Four collinear points A, B, M, M′ are said to be
harmonic if their anharmonic ratio (ABMM′) is −1.
Given A, M and M′, where would we have to place B
in order to make four harmonic points A, B, M, M′?

A(−3, 1)
M(0, 1

2)

M′(9
2 ,− 1

4)

We can find B by choosing a center of perspective
P and making the following construction.

A
M

M′

P

U
V

B

The center of perspective P and the transversal line
AV can be anywhere. Once they are decided, the
rest of the construction follows. Begin by defining
the given points.

Welcome to Racket v6.1.1.
> (define A (point -3 1))
>(define M (point 0 1/2))
> (define M1 (point 9/2 -1/4))

A convenient choice of P is (2, 4). A good way to
choose the transversal line AV is to make a pencil on
A and then decide on a reasonable slope.

> (define P (point 2 4))
> (define penA (make-pencil A))
> (define transversal (penA 1/8))

Determine the points U, V by using join.

> (define transversal (penA 1/8))
> (define U (join transversal (join P M)))
> (define V (join transversal (join P M1)))
> (values U V)
(point 7/13 75/52)
(point 241/73 261/146)

Determine the intersection point of lines UM′ and
MV.

> (define X (join (join U M1)
(join M V)))

> X
(point 241/168 89/84)

One more step to find B: join lines AM and PX.

> (define B (join (join A M)
(join P X)))

> B
(point 9/7 2/7)

14 Problem solving in the REPL

Calculate the anharmonic ratio (ABMM′).

> (anharmonic-ratio A B M M1)
-1

Beautiful. The points A, B, M, M′ are harmonic.

3.9 Another harmonic construction

Taking the previous idea but looking at it from an-
other point of view: any quadrilateral WXYZ can be
used to construct a range of harmonic points.

W

X

Y

Z

A BM M′

Joining sides XW and YZ gives point A, while join-
ing sides WZ and XY gives point B. Finally M
and M′ are constructed from the diagonal lines WY
and XZ. Study this for the paralellogram W(−1, 1

2),
X(1

3 , 2), Y(3
4 ,− 1

5), Z(0,− 1
2).

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define W (point -1 1/2))
> (define X (point 1/3 2))
> (define Y (point 3/4 -1/5))
> (define Z (point 0 -1/2))

Find points A, B by joining sides.

> (define A (join (join X W)
(join Y Z)))

> (define B (join (join W Z)
(join X Y)))

> (values A B)
(point -85/29 -97/58)
(point 213/214 -160/107)

Find M and M′ by joining diagonals to line AB.

> (define M (join (join X Z)
(join A B)))

> (define M1 (join (join W Y)
(join A B)))

> (values M M1)
(point -6/43 -133/86)
(point 468/127 -349/254)

Is (ABMM′) = −1?

> (anharmonic-ratio A B M M1)
-1

Yes it is. The points form a harmonic range.

3.10 Yet another harmonic construction

Given points A(−3,−3) and B(1
2 ,− 1

2), choose a
point S somwhere and make the following construc-
tion.

S

A

B
C

D
A′

B′C′

Line SC′ is a median line and lines A′B′ and SD are
parallel. The range A, B, C, D will be harmonic.
Let’s try it. Define symbols for the given points and
choose a good place for S.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define S (point -2 2))
> (define A (point -3 -3))
> (define B (point 1/2 -1/2))

Use make-range to choose A′ along SA and B′ along
SB.

> (define A1 ((make-range A S) 5/2))
> (define B1 ((make-range B S) 2/5))
> (values A1 B1)
(point -16/7 4/7)
(point -3/14 3/14)

Now calculate the median line SC′ and the point C.

> (define C1 ((make-range A1 B1) 1))
> (define C (join (join A B)

(join S C1)))
> C
(point -1/2 -17/14)

We need one more point: D. Construct a line on
S that is parallel to A′B′. This is easily done with
make-pencil.

Division ratio and parallel projection 15

> (define penS (make-pencil S))
> (define s (slope (join A1 B1)))
> (define D (join (join A B)

(penS s)))
> D
(point 17/6 7/6)

Verify that the points A, B, C, D are harmonic.

> (anharmonic-ratio A B C D)
-1

That’s it!

3.11 Division ratio and parallel projection

When points are projected by means of parallel lines
from one line to another, the lengths of segments de-
fined by these points does not, in general, remain the
same. However, the division ratio k of three points
does remain the same.

A(−3, 1)
M(1

8 , 3
8) B(2, 0)

A′
M′ B′ [−1, 6, 15]

Here the lines AA′, BB′ and MM′ are parallel. We
want to show that M divides AB with the same pro-
portions as the way M′ divides A′B′, i.e.,

AM : MB = AM′ : M′B′

or k = k′. Begin by defining symbols for the given
points and the given line [−1, 6, 15].

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define A (point -3 1))
> (define B (point 2 0))
> (define M (point 1/8 3/8))
> (define m (line -1 6 15))

To construct the necessary parallel lines, we make
pencils on the given points A, M, B and we make
sure to choose lines from these pencils having the
same slope. Of course the slope is arbitrary, so we
just choose a convenient value of −5.

> (define penA (make-pencil A))
> (define penB (make-pencil B))
> (define penM (make-pencil M))

Use join to find the projected points.

> (define A1 (join m (penA -5)))
> (define B1 (join m (penB -5)))
> (define M1 (join m (penM -5)))
> (values A1 M1 B1)
(point -69/31 -89/31)
(point 21/31 -74/31)
(point 75/31 -65/31)

Check the division ratios of the two ranges.

> (division-ratio A B M)
5/3
> (division-ratio A1 B1 M1)
5/3

They are the same.

3.12 Anharmonic ratio and perspective

If two collinear ranges are related by perspective,
then they have the same anharmonic ratio. Another
way to say this is that a change of perspective does
not change the anharmonic ratio. We will verify this
for the following case:

A
B

C
D

A′
B′

C′
D′

S(0, 4)

[−3, 13, 28]

We are given the center of perspective S and the
line [−3, 13, 28] to which the points (formidable frac-
tions!)

A
(

57
56

,−23
56

)
, B

(
19
248

,
61
248

)

C
(

779
568

,
581
568

)
, D

(
19
8

,
13
8

)
are projected by the pencil of lines emanating from
S. Start by defining symbols for the given data.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define S (point 0 4))
> (define m (line -3 13 28))
> (define A (point -57/56 -23/56))

16 Problem solving in the REPL

> (define B (point 19/248 61/248))
> (define C (point 779/568 581/568))
> (define D (point 19/8 13/8))

Compute A′, B′, C′, D′ by using join.

> (define A1 (join (join S A) m))
> (define B1 (join (join S B) m))
> (define C1 (join (join S C) m))
> (define D1 (join (join S D) m))
> (values A1 B1 C1 D1)
(point -3/2 -5/2)
(point 1/8 -17/8)
(point 41/16 -25/16)
(point 5 -1)

Find the anharmonic ratios of the two ranges.

> (anharmonic-ratio A B C D)
5/4
> (anharmonic-ratio A1 B1 C1 D1)
5/4

They are equal. Let’s try this with a different per-
spective arrangement.

[−7, 2, 22]

A′
B′

C′

D′

S

A(−3, 3)

B

C

D(−2,−4)

We are given S(1
2 ,−1), the points A(−3, 3),

D(−2,−4) and the line [−7, 2, 22]. We have to fill
in the rest of the details ourselves and verify that the
anharmonic ratio of A,B,C,D does not change when
the points are projected over to A′,B′,C′,D′.

First, we use make-range to pick out suitable
points B and C.

$ racket -it rational-geometry.rkt
Welcome to Racket v6.1.1.
> (define S (point 1/2 -1))
> (define m (line -7 2 22))
> (define A (point -3 3))
> (define D (point -2 -4))
> (define r (make-range A D))
> (define B (r 1/2))
> (define C (r 5/3))
> (values A B C D)

(point -3 3)
(point -8/3 2/3)
(point -19/8 -11/8)
(point -2 -4)

Now we find the projections of the points onto line
[−7, 2, 22] using join.

> (define A1 (join (join A S) m))
> (define B1 (join (join B S) m))
> (define C1 (join (join C S) m))
> (define D1 (join (join D S) m))
> (values A1 B1 C1 D1)
(point 148/65 -197/65)
(point 130/51 -106/51)
(point 457/155 -211/310)
(point 94/23 76/23)

Compute the anharmonic ratios.

> (anharmonic-ratio A B C D)
10/7
> (anharmonic-ratio A1 B1 C1 D1)
10/7

They are equal!

3.13 Code listing

Many more features to can be added to this project,
such as proper handling of lines with infinite slope.
Support for point-conics and line-conics would open
up many more problems for study. Case studies
of Desargue’s theorem and the extensive harmonic
properties of four-point quadrilaterals would make
fine projects too.

Below is the complete code listing, with unit tests.
Tests are done using the rackunit library, which is
imported into the module right at the beginning.
The tests are defensive. If you modify, extend, or
improve the code, it’s good to have the unit tests
there. They can warn you if you your changes inad-
vertently break something.

;; rational-geometry.rkt
;;
;; Rational geometry of points and lines.

#lang racket

(require rackunit)

(provide (struct-out point)
(struct-out line)
det
det3

Code listing 17

line-equal?
prettify
join
concurrent?
collinear?
triangle-area
slope
anti-slope
make-pencil
make-range
division-ratio
anharmonic-ratio)

(struct point (x y) #:transparent)
(struct line (l m n) #:transparent)

(define (det a b c d)
(- (* a d)

(* b c)))

(define (det3 a b c d e f g h i)
(+ (* a (det e f h i))

(* -1 b (det d f g i))
(* c (det d e g h))))

;; Two lines are equal if their
;; components are proportional.
;; The following cross-products
;; must be zero:
;;
;; [l1, m1, n1]
;; [l2, m2, n2]
;;
;; l1*m2 - m1*l2 = 0
;; m1*n2 - n1*m2 = 0
;; l1*n2 - n1*l2 = 0
;;
;; These conditions can be neatly
;; expressed using determinants.
(define (line-equal? line1 line2)

(match-let (((line l1 m1 n1) line1)
((line l2 m2 n2) line2))

(and (= 0 (det l1 m1 l2 m2))
(= 0 (det m1 n1 m2 n2))
(= 0 (det l1 n1 l2 n2)))))

;; Takes two lines and computes the
;; join (a point) by Cramer’s method.
(define (join-lines a b)

(match-let (((line al am an) a)
((line bl bm bn) b))

(let ((D (det al am bl bm))
(Dx (det (- an) am (- bn) bm))
(Dy (det al (- an) bl (- bn))))

(point (/ Dx D)
(/ Dy D)))))

;; Compute the join of two points.
;; Divide through by n, giving
;;
;; (l/n)*x + (m/n)*y + 1 = 0
;;
;; set p = l/n, q = m/n. we have the
;; equation x*p + y*q + 1 = 0 where
;; p, q are the unknowns. This equation
;; is satisfied at two points (x1,y1)
;; and (x2,y2). So we have two equations
;; in two unknowns:
;;
;; x1*p + y1*q + 1 = 0
;; x2*p + y2*q + 1 = 0
;;
;; Which can be solved by Cramer’s method:
;;
;; p = Dp/D, q = Dq/D
;;
;; However this won’t work for lines
;; going through the origin, since in
;; this case n = 0. But it’s clear that
;; n can be identified with D, l with Dp,
;; and m with Dq, so we don’t actually
;; have to preform any division. We just
;; compute the determinants and the line
;; components follow:
;;
;; line = [Dp, Dq, D]
;;
(define (join-points A B)

(match-let (((point x1 y1) A)
((point x2 y2) B))

(let ((Dp (det -1 y1 -1 y2))
(Dq (det x1 -1 x2 -1))
(D (det x1 y1 x2 y2)))

(line Dp Dq D))))

(define (eliminate-fractions myline)
(match-let (((line l m n) myline))

(let ((dl (denominator l))
(dm (denominator m))
(dn (denominator n)))

(let ((d (* dl dm dn)))
(line (* d l)

(* d m)
(* d n))))))

(define (eliminate-factors myline)
(match-let (((line l m n) myline))

(let ((g (gcd l m n)))

18 Problem solving in the REPL

(line (/ l g) (/ m g) (/ n g)))))

(define (neg1 x)
(if (< x 0) 1 0))

(define (count-negatives l m n)
(+ (neg1 l)

(neg1 m)
(neg1 n)))

(define (fix-negatives myline)
(match-let (((line l m n) myline))

(if (< (count-negatives l m n) 2)
myline
(line (- l) (- m) (- n)))))

(define (prettify myline)
(fix-negatives
(eliminate-factors
(eliminate-fractions myline))))

;; U, V can be two points or two lines.
;; Racket will figure out which join to
;; use.
(define (join U V)

(cond ((and (point? U)
(point? V))

(prettify (join-points U V)))
((and (line? U)

(line? V))
(join-lines U V))

(else
(error

’join
"Cannot join arguments."))))

(define (triangle-area A B C)
(match-let (((point Ax Ay) A)

((point Bx By) B)
((point Cx Cy) C))

(* 1/2
(+ (det Ax Ay Bx By)

(det Bx By Cx Cy)
(det Cx Cy Ax Ay)))))

;; Collinearity using a 3x3 determinant.
(define (collinear? A B C)

(match-let (((point Ax Ay) A)
((point Bx By) B)
((point Cx Cy) C))

(= 0 (det3 Ax Ay 1
Bx By 1
Cx Cy 1))))

;; Concurrency using 3x3 determinant.
(define (concurrent? a b c)

(match-let (((line al am an) a)
((line bl bm bn) b)
((line cl cm cn) c))

(= 0 (det3 al am an
bl bm bn
cl cm cn))))

(define (slope a)
(let ((al (line-l a))

(am (line-m a)))
(- (/ al am))))

;; Returns slope of perpendicular.
(define (anti-slope a)

(- (/ (slope a))))

;; k-pencil returns a function of slope.
;; Passing it a value for slope returns
;; line chosen from the pencil with that
;; slope. Use the equation:
;;
;; y - y0 = k*(x - x0)
;;
;; where (x0,y0) is the pencil center.
;; Putting this into canonical line
;; form gives
;;
;; [1, -k, k*x0 - y0]
;;
(define (make-pencil M)

(match-let (((point Mx My) M))
(lambda (k)

(prettify (line (- k)
1
(- (* k Mx)

My))))))

;; k-range returns a function that does
;; proportional divison on the segment AB.
;; Give it a k, and it will find M.
(define (make-range A B)

(match-let (((point Ax Ay) A)
((point Bx By) B))

(lambda (k)
(let ((a (+ 1 k)))

(point (/ (+ Ax (* k Bx)) a)
(/ (+ Ay (* k By)) a))))))

;; Given A, B and M, by what ratio k does
;; M divide segment AB? This is especially
;; useful for determining where M lies on
;; the line AB with respect to the points

Code listing 19

;; A, B.
;;
;; k = (My - Ay)/(By - My)
;; = (Mx - Ax)/(Bx - Mx).
;;
(define (division-ratio A B M)

(if (collinear? A B M)
(let ((Mx (point-x M))

(Ax (point-x A))
(Bx (point-x B)))

(/ (- Mx Ax) (- Bx Mx)))
(error ’division-ratio

"A B M must be collinear")))

;; This way of computing anharmonic ratio
;; builds on what we have above. Let k, k1
;; be the ratios
;;
;; k = AM/BM, k1 = AM1/BM1
;;
;; for points A, B, M and A, B, M1. Then
;; the anharmonic ratio of A, B, M, M1 is
;; the ratio of these ratios: k/k1.
(define (anharmonic-ratio A B M M1)

(/ (division-ratio A B M)
(division-ratio A B M1)))

;;;
;;;
;;; Tests.
;;;
;;;

;; Test determinant.
(check-equal?

(det3 1 2 3 4 5 6 7 8 9) 0)

;; Test equality of lines.
(check-true (line-equal? (line 1 2 3)

(line -2 -4 -6)))
(check-true (line-equal? (line -1 1 0)

(line 1 -1 0)))
(check-true (line-equal? (line 1/3 2/3 7/3)

(line 1 2 7)))
(check-true (line-equal? (line 2 2 0)

(line 1 1 0)))
(check-true (line-equal? (line 1 0 0)

(line 5 0 0)))
(check-true (line-equal? (line 0 -2 0)

(line 0 1 0)))

;; Test line join.
(check-equal? (join-lines (line 1 2 3)

(line -3 2 1))

(point -1/2 -5/4))
(check-equal? (join-lines (line 1 0 0)

(line 0 1 0))
(point 0 0))

;; Test join points. Include cases
;; involving the origin.
(check-true

(line-equal? (join-points (point 1 2)
(point -7 5))

(line 3/8 1 -19/8)))
(check-true

(line-equal? (join-points (point 1 1)
(point 2 2))

(line -1 1 0)))
(check-true

(line-equal? (join-points (point 0 0)
(point 1 1))

(line -1 1 0)))

;; Test prettify.
(check-equal?

(prettify (line 1/9 -4/18 -8/27))
(line -3 6 8))

;; Test triangle area.
(let ((A (point 1 2))

(B (point 4 3))
(C (point 6 1)))

(check-equal? (triangle-area A B C) -4)
(check-equal? (triangle-area A C B) 4))

;; Test collinear.
(check-true (collinear? (point 3 8)

(point 0 35/4)
(point -9 11)))

;; Test concurrency.
(check-true (concurrent? (line -3/4 -1 11/4)

(line -7/6 -1 19/6)
(line -1/2 -1 5/2)))

;; Test slope, anti-slope.
(check-equal? (slope (line 1 2 3)) -1/2)
(check-equal? (anti-slope (line 1 2 3)) 2)

;; Test make-pencils. Make sure they work
;; on the origin.
(let ((penA (make-pencil (point 1 2)))

(penB (make-pencil (point 0 0))))
(check-true
(line-equal? (penA -1)

(line 1 1 -3)))
(check-true

20 Problem solving in the REPL

(line-equal? (penB 1)
(line -1 1 0))))

;; Test make-range.
(let ((ran (make-range (point 1 2)

(point -3 8))))
(check-equal? (ran 1/2)

(point -1/3 4)))

;; Test division-ratio.
(let ((A (point 1 3))

(B (point -5 2))
(M (point 19 6)))

(check-equal? (division-ratio A B M) -3/4))

;; For testing.
(define (anharmonic-ratio-x A B C D)

(let ((u1 (point-x A))
(u2 (point-x B))
(u3 (point-x C))
(u4 (point-x D)))

(/ (* (- u1 u3)
(- u2 u4))

(* (- u1 u4)
(- u2 u3)))))

;; Test anharmonic ratio.
(let* ((A (point 1 3))

(B (point -5 2))
(ran (make-range A B))
(C (ran -5))
(D (ran -2)))

(check-equal?
(anharmonic-ratio A B C D) 5/2)

(check-equal?
(anharmonic-ratio A B C D)
(anharmonic-ratio-x A B C D)))

