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1 Introduction

Classic textbooks1 on quaternions usually begin by
introducing additive and associative properties of
quaternion vectors. Then they present many prob-
lems and examples from elementary geometry that
are solved by applying these properties. Although
the introductory problems and examples presented
in these old books are fascinating in their own
right and likely unfamiliar to today’s students, the
method of solution by quaternion vectors is hardly
different from solutions which can be obtained by
modern linear algebra.

The multiplicative properties of quaternion vec-
tors are developed later in the books—sometimes
much later—upon which the reader may be alarmed
to discover that p times q is not the same as q times
p in the calculus of quaternions. Heaviside, Graves
and De Morgan objected to this non-commutativity,
suggesting that Hamilton’s calculus was flawed be-
cause of it. But non-commutativity was not an arbi-
trary choice on the part of Hamilton. Quaternions
were not an invention but a discovery. And they
turned out to be non-commutative. It is the mul-
tiplicative aspect of quaternion calculus that distin-
guishes it. Concerning this Tait writes in chapter II
of Elementary Treatise on Quaternions:

We now come to the consideration of ques-
tion in which the Calculus of Quaternions
differs entirely from any previous mathe-
matical methods; and here we shall get an
idea of what a Quaternion is, and when it
derives its name. These questions are fun-
damentally involved in the novel use of the
symbols of multiplication and division.

In light of this, perhaps it is best to approach the
study of quaternions the other way around—starting
with their multiplicative properties. We will de-
part from the usual pedagogical development of the
classic quaternion books and instead introduce non-
commutativity immediately, even before introducing
quaternions or even vectors. Geometry is essentially
non-commutative, so this development seems logi-
cal. We will see that non-commutativity is a fea-

1W. R. Hamilton, Elements of Quaternions. P. G. Tait, An El-
ementary Treatise on Quaternions. P. Kelland and P. G. Tait, An
Introduction to Quaternions.

ture of Hamilton’s calculus, not a defect as claimed
by Heaviside. Algebraic computations with quater-
nions give geometrical answers in remarkable ways
precisely because quaternion multiplication is non-
commutative.

2 Three propositions

Let’s dispense with the requirement that quantities
should be commutative and agree that α, β, γ may
or may not be commutative. That is, αβ may or may
not be the same as βα.

We are at once led to the natural idea of geo-
metrically interpreting three different algebraic cases
regarding these quantities. First, where α and β
commute: αβ = βα. Second, where α and β anti-
commute: αβ = −βα. And the third, where α and
β neither commute nor anti-commute: αβ 6= βα and
αβ 6= −βα.

At this point we don’t know exactly what these
α and β are, but since we will be associating them
with orientation of lines, we might as well call them
vectors.

We can study the nature of the product αβ by
defining two operators, S and V, in terms of the
commutator αβ − βα and anti-commutator αβ + βα
of α and β:

Sαβ =
αβ + βα

2

Vαβ =
αβ− βα

2
. (1)

The three cases can be phrased in terms of S and V
as three propositions.

Let’s propose that if α and β commute then they
represent—in some sense—parallel lines.

α

β

In this case the commutator αβ− βα vanishes while
the anti-commutator αβ + βα does not vanish. Using
the operators defined above, we can say that if α ‖ β
then Sαβ 6= 0 and Vαβ = 0.
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2 Interpretation of Sαβ and Vαβ

Next, let us propose that if α and β anti-commute
then they represent, in some way, perpendicular
lines.

α β

Here, αβ + βα vanishes while αβ− βα does not. Us-
ing the operators in (1), we can say that if α ⊥ β then
Sαβ = 0 while Vαβ 6= 0.

Finally, let’s propose that if α and β neither com-
mute nor anti-commute, then they represent lines
which are neither parallel nor perpendicular.

α
β

i.e., lines that are inclined obliquely or acutely. In
this case neither αβ + βα nor αβ− βα vanish. Using
our operators, we can say that, for this case, Sαβ 6= 0
and Vαβ 6= 0.

Arrange these propositions in a table for easy ref-
erence:

Commutativity Product αβ Geometry

α, β commute Sαβ 6= 0, Vαβ = 0 α ‖ β

α, β anti-commute Sαβ = 0, Vαβ 6= 0 α ⊥ β

neither Sαβ 6= 0, Vαβ 6= 0 neither

3 Decomposition of αβ

When α ‖ β we have αβ = Sαβ. And when α ⊥ β we
have αβ = Vαβ. In any other orientation of α and β
we have αβ = Sαβ + Vαβ. These are easy to verify.
We will verify the last one:

Sαβ + Vαβ =
αβ + βα + αβ− βα

2
= αβ. (2)

The relation αβ = Sαβ + Vαβ tells us that the prod-
uct of any two vectors can be decomposed into the
sum of an S–part and a V–part.

From the definitions (1) it can be easily shown that
S and V are distributive over addition and homoge-
neous with respect to multiplication by numbers m

and n:

S(mαβ + nγδ) = mSαβ + nSγδ

V(mαβ + nγδ) = mVαβ + nVγδ

With the help of these algebraic properties, it’s easy
to establish other interesting results concerning S
and V. For example: that S annihiliates the V–part
of αβ, while V annihilates the S–part of αβ:

S . Vαβ = S .
αβ− βα

2
=

1
2
(Sαβ− Sβα)

=
1
4
(αβ + βα− βα− αβ) = 0.

Likewise it can be shown that V . Sαβ = 0. Here we
used the point or stop symbol, ’ . ’, which Hamilton
and Tait use to make expressions involving S and V
less ambiguous without resorting to writing a lot of
parentheses. It means that whatever is to the left of
the point is applied to the expression on the right
of the point. In the same manner, which is left as
an exercise, it can be shown that S . Sαβ = Sαβ and
V . Vαβ = Vαβ. Combining these properties of S
and V with the decomposition (2) we see that S is an
operator that, when applied to a product of vectors
αβ, returns the S–part of the product and annihilates
the V–part:

S . αβ = S . (Sα + Vαβ) = S . Sαβ + S . Vαβ

= Sαβ

while V is an operator that, when applied to αβ, pre-
serves the V–part of the product and annihilates the
S–part:

V . αβ = V . (Sα + Vαβ) = V . Sαβ + V . Vαβ

= Vαβ.

4 Interpretation of Sαβ and Vαβ

Let α and β be parallel. By the propositions of part
2, αβ− βα = 0. If γ is any vector perpendicular to
α, it will be perpendicular to β as well, and γ will
anti-commute with α and anti-commute with β. We
have

γ . αβ− αβ . γ = γαβ − αβγ

= −αγβ + αγβ

= 0.

Therefore αβ commutes with γ, which is only pos-
sible if it is either a vector parallel to γ, or a scalar.
But if we choose another vector, δ, also perpendicu-
lar to α but not perpendicular to γ, we find that αβ
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commutes with δ as well. A vector cannot be parallel
to both γ and δ. Therefore αβ must be either 0 or a
scalar. We have determined that if two vectors are
parallel, their product is either 0 or a scalar.

Let α be perpendicular to β. By the propositions
of part 2, αβ + βα = 0. If γ is any vector parallel to
α, it will be perpendicular to β, and γ will commute
with α and anti-commute with β:

γ . αβ + αβ . γ = γαβ + αβγ

= αγβ− αγβ

= 0.

Thus, γ anti-commutes with the product αβ. By the
propositions of part 2, αβ must be perpendicular to
γ. Since a scalar other than 0 cannot be perpendicu-
lar to anything, αβ must be either 0 or a vector. We
have determined that if two vectors are perpendicu-
lar, their prodict is either 0 or a vector.

From the propositions of part 2, Sαβ = αβ when
α ‖ β and Vαβ = αβ when α ⊥ β. Combined with
the results above we have the following: when α ‖ β,
Sαβ either vanishes or is a scalar, and when α ⊥ β,
Vαβ either vanishes or is a vector.

We now examine the general case where α and β
are neither parallel nor perpendicular. Given some
vector α, the vector β can be written as the sum of
two vectors, β′ + β′′, where β′ is parallel to α and β′′

is perpendicular to α.

α

β′
β′′

β

We can write the product αβ as α(β′ + β′′). For the
S-part of αβ we obtain

Sαβ = S . α(β′ + β′′)

= Sαβ′ + Sαβ′′

= Sαβ′

= αβ′.

But as we have shown in the previous paragraphs,
αβ′ must either vanish or be a scalar. Therefore Sαβ
either vanishes or is a scalar. Now for the V-part:

Vαβ = V . α(β′ + β′′)

= Vαβ′ + Vαβ′′

= Vαβ′′

= αβ′′.

Since have previously shown that αβ′′ must either
vanish or be a vector, Vαβ either vanishes or is a
vector.

We are now in a position to interpret the general
nature of the product of two vectors αβ and the na-
ture of the S and V parts in the decomposition (2),

αβ = Sαβ + Vαβ.

The arguments of the preceeding paragraphs show
that the S-part is always a scalar and the V-part is al-
ways a vector. This is true even when one of the two
vanishes, as happens when α ‖ β or α ⊥ β, beause
there is no difference, in this calculus, between the 0 scalar
and the 0 vector. You could say that 0 is the only thing
whose S-part is equal to its V-part. Another way to
see that 0 is both a scalar and a vector is to consider
that if every vector is a linear combination of Hamil-
ton’s imaginaries,

γ = xi + yj + zk,

then setting x = y = z = 0 gives the zero vector.
The justification for Hamilton’s choice of symbols

S and V is now clear. Hamilton calls Sαβ the scalar
of αβ and Vαβ the vector of αβ. Note that Hamilton’s
use of the terms scalar and vector is different from
the way we usually use them in linear algebra, or
even the way we have been using them in this arti-
cle. In Hamilton’s context, the scalar of and the vector
of refer to operators that act on objects, while we
usually use the terms scalar and vector to signify the
objects themselves.

Thus the product of two vectors is either a scalar,
αβ = w, or a vector, αβ = γ, or neither: αβ = w + γ,
that is, a scalar plus a vector. The latter is what
Hamilton calls a quaternion. Scalars and vectors
are degenerate kinds of quaternions. A scalar is a
quaternion with no vector part. A vector is a quater-
nion with no scalar part. Although α and β are
vectors and thus have no scalar parts, the product
αβ has, in the general case described above, both
a scalar part and a vector part. Therefore, in gen-
eral, the product of two vectors is not a vector, but a
quaternion.

It’s hard to imagine a more natural progression
of ideas leading up to this. From simple proposi-
tions concerning non-commutative multiplication of
vectors, we are led to the notion of quaternion, i.e.,
scalar plus vector.


