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1 Square and triangular numbers
If n dots can be arranged in a regular shape then n is a polygonal number. Triangular
numbers and square numbers are two familiar kinds of polygonal numbers. A question
immediately comes to mind: is it possible for a number to be both square and triangular?
This question is surprisingly deep. A full study of it involves a large amount of math-
ematical machinery: quadratic irrationals, matricies, recursion, continued fractions, the
Euclidean algorithm, Diophantine equations and more.

A number n is a triangular number if n dots can be arranged in a triangle. If n is the
kth triangular number, then

n =
k(k + 1)

2
.

If n is a square number then n dots can be arranged in a square. The kth square number
is n = k2. Here are the first few triangular and square numbers, along with their dot
diagrams:

1(1+1)
2

2(2+1)
2

3(3+1)
2

4(4+1)
2

12 22 32 42

From looking at the dots, the number n = 1 = 12 = 1(1 + 1)/2 is both triangular and
square. So, at least one such number exists. It can be obtained in a different way. Suppose
we ask: when is the kth triangluar number equal to the kth square number? To answer
this, we must find the the solutions of

k(k + 1)
2

= k2. (1)

This is a simple quadratic equation with solutions k = 0 and k = 1. It tells us that the 0th
triangular number is also the 0th square number, and the 1st triangular number is also the
1st square number. There is no other k such that the kth triangular number is also the kth
square number.

Why not? It’s easy see why by looking at the dot diagrams. For every k > 1, the kth
triangular number is smaller than the kth square number. They can never be equal when
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k > 1. This give a clue about how to proceed: for k > 1, the kth triangular number can
only be equal to a square integer j 2 if j < k. Replace k in the right-hand side of (1) with
something that can be made smaller: k− h, where h is some integer:

k(k + 1)
2

= (k− h)2. (2)

When h = 0 we recover the solutions that we already found: k = 0 and k = 1, corre-
sponding to the square-triangular numbers n = 0 and n = 1. In principle we can find all
solutions by working our way through all possible values of h:

h = 0, 1, 2, 3, . . . .

Putting h = 1 in (2) gives the quadratic equation

k2 − 5k + 2 = 0.

Does this have any integer solutions? If the discriminant of a quadratic polynomial is a
perfect square, then it might have integer roots. Here the discriminant of the right-hand
side is 28, so no, it doesn’t. We can interpret this negative result like so: there is no k such
that the kth triangular number is equal to the (k− 1)th square number.

Now put h = 2 in (2),
k2 − 9k + 8 = 0.

The polynomial has discriminant 49, so this equation possibly does have integer solutions.
We find them, either by factoring or by the quadratic formula: k = 1 and k = 8. The first
solution says that the triangluar number 1 is equal to the square number (1− 2)2 = (−1)2.
This is true, but we are more interested in squares with positive sides. Nevertheless, it
is good that we are getting some solutions we didn’t expect. The second solution, k = 8,
corresponds to the 8th triangular number, 8(8 + 1)/2 = 36, which happens to be the 6th
square number, 62 = 36. Have a look at them side-by-side. Since h = 2, the sides of the
square are two dots smaller than the sides of the triangle.

8(8+1)
2 = 36 (8− 2)2 = 62 = 36

For h = 3 we have the equation
k2 − 13k + 18 = 0.

The discriminant is 97, so there are no integer solutions. We keep working like this, by
brute force, using the discriminant method to judge whether there are integer solutions,
until we get to h = 14 and its corresponding equation:

k2 − 57k + 392 = 0.
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The discriminant of the right hand side is 1681, which is a perfect square, 412, so the
equation possibly has integer roots. Using the quadratic formula we see that it does: k = 8
and k = 49. The first solution says that the 8th triangular number, 36, is equal to a square
number (8− 14)2 = (−6)2 = 36. The second solution, k = 49, corresponds to the triangular
number 1225, which is also equal to the square (49− 14)2 = 352.

It may take a long time to discover the next triangular-square number by brute-force
hand calculations. We could employ some tricks to speed up the analysis of each polyno-
mial, but it would still be brute force. We need a more sophisticated approach.

2 Pell’s equation
The thing to do is to study the nature of equation (2). It is a quadratic equation in two
variables, k and h, with the additional condition that h and k are integers. This is known
as a Diophantine equation.

There are many kinds of Diophantine equations, each having their own body of theory
and techniques for finding solutions. For example, this is a linear Diophantine equation in
two integer unknowns, x and y:

mx + ny = 1.

There are well-developed theories for solving this integer equation, based on the Euclidean
algorithm or on continued fractions or on other ideas. When restricted to integers, the
Pythagorean equation

x2 + y2 = z2

is a second-order Diophantine equation in three integer unknowns x, y, z. Another well-
known Diophantine equation is Pell’s equation:

x2 − Ay2 = 1,

where x and y are integer unknowns and A is an integer that is not a perfect square. Pell’s
equation has a long and interesting history, and some of the greatest mathematicians, like
Leonhard Euler, contributed to the theory of it.

Can (2) be fit into a known type of Diophantine equation for which there are theories
and techniques for finding solutions? It turns out that, with a bit of algebra, equation (2)
can be rewritten as an instance of Pell’s equation.

Multiply equation (2) by 8:

4k(k + 1) = 4k2 + 4k = 8(k− h)2.

Add 1 to both sides to complete the square,

4k2 + 4k + 1 = 8(k− h)2 + 1

(2k + 1)2 = 8(k− h)2 + 1

(2k + 1)2 − 8(k− h)2 = 1

(2k + 1)2 − 2(2(k− h))2 = 1.

And now, if we let x = 2k + 1 and y = 2(k− h) we get Pell’s equation with A = 2,

x2 − 2y2 = 1. (3)
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There are several theoretical methods available for studying this Diophantine equation.
Continued fractions, quadratic irrationals, matricies, recursion, etc. We will borrow some
ideas from the theory of quadratic irrationals. Just enough to find a few more triangular-
square numbers.

3 Quadratic irrationals

A quadratic irrational is a number of the form

x + y
√

A

where x and y are integers and A is not a perfect square. If A is not a perfect square, then
y
√

A is an irrational number. The number x + y
√

A consists of two parts: an integer part x
and an irrational part y

√
A. Quadratic irrationals have some important properties: if two

quadratic irrationals are equal, then their integer parts are equal, and their irrational parts
are equal. In other words, if

x1 + y1
√

A = x2 + y2
√

A

then
x1 = x2 and y1 = y2.

With respect to this property, quadratic irrationals behave like vectors or complex num-
bers. When two quadratic irrationals of the same type (having the same A) are multiplied
together, the result is another quadratic irrational of the same type:

(x + y
√

2)(x′ + y′
√

2) = (xx′ + 2yy′) + (xy′ + yx′)
√

2

= x′′ + y′′
√

2.

It follows that when a quadratic irrational is raised to any power n, the result is another
quadratic irrational of the same type. It’s interesting to prove this using the binomial
theorem.

(x + y
√

A)n =

(
n
0

)
xn +

(
n
1

)
xn−1y

√
A + · · ·+

(
n
n

)
(y
√

A)n

= xn + yn
√

A. (4)

Every term that has an even power of
√

A is an integer. Every term that has an odd power
of
√

A is an integer times the irrational
√

A. We have collected all the integer terms into
xn and all the irrational terms into yn

√
A. The result is a quadratic irrational of the same

type as x + y
√

A.
The equation x2 − 2y2 = 1 can be factored into quadratic irrationals:

(x + y
√

2)(x− y
√

2) = 1.

Notice that if x, y is a solution, then x,−y is also a solution. This corresponds to the
solutions we saw earlier having negative sides. Now raise both sides to the power of n,

(x + y
√

2)n(x− y
√

2)n = 1.
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By (4) this can be written as

(xn + yn
√

2)(xn − yn
√

2) = 1.

In other words: if x, y is a solution, then xn, yn is also a solution. This gives us a beautiful
way of generating new solutions from old solutions: just take a known solution and write
it as a quadratic irrational, then raise it to some power.

All Pell equations have a trivial solution, x = 1, y = 0. But when y = 0, we cannot
make a quadratic irrational. So our technique will not work if we try to begin with the
trivial solution. We must start with the first non-trivial solution.

Recall that
x = 2k + 1, y = 2(k− h).

The trivial solution x = 1, y = 0 corresponds to k = 0, h = 0. The first non-trivial solution
that we found was k = 1, h = 0. In terms of x and y, this is

x = 2(1) + 1 = 3, y = 2(1− 0) = 2.

Both x and y are non-zero, so we can begin with the solution x = 3, y = 2. Write it as a
quadratic irrational:

3 + 2
√

2.

Now, raise it to the power of 2: (
3 + 2

√
2
)2

= 17 + 12
√

2.

We get a new solution, x = 17, y = 12. This corresponds to k = 8, h = 2, which was the
first solution we found by brute force.

Raise the quadratic irrational to the 3rd power,(
3 + 2

√
2
)3

= 99 + 70
√

2.

This solution, x = 99, y = 70, corresponds to k = 49, h = 14, which is the triangular-square
number 49(49 + 1)/2 = 1225 = 352.

We are ready to go one step beyond. Raise the quadratic irrational to the 4th power:(
3 + 2

√
2
)4

= 577 + 408
√

2.

The solution x = 577, y = 408 corresponds to k = 288, h = 84. This gives the triangular-
square number 288(288+ 1)/2 = 41616 = 2042. The sides of the square are 84 dots smaller
than the sides of the triangle. Going yet farther, we arrange our computations in a table:

(x + y
√

2)n Expansion k h Triangular-square

(3 + 2
√

2)1 3 + 2
√

2 k = 1 h = 0 1 = 12

(3 + 2
√

2)2 17 + 12
√

2 k = 8 h = 2 36 = 62

(3 + 2
√

2)3 99 + 70
√

2 k = 49 h = 14 1225 = 352

(3 + 2
√

2)4 577 + 408
√

2 k = 288 h = 84 41616 = 2042

(3 + 2
√

2)5 2378 + 2263
√

2 k = 1681 h = 482 1413721 = 11892

(3 + 2
√

2)6 19601 + 13860
√

2 k = 9800 h = 2870 48024900 = 69302
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We found more solutions, but there are lingering questions. Does the quadratic irra-
tional technique generate all solutions, or just some of them? Also, it seems we were lucky
to find the first non-trivial solution easily. What would we do if our Pell equation was not
so simple? For instance, the first non-trivial solution of x2 − 61y2 = 1 is the astoninshing
pair

x = 1766319049, y = 226153980.

Do all Pell equations have non-trivial solutions? Is there a technique for finding the first
non-trivial solution? If you are a student who needs a mathematics topic for a self-study
project, these questions would make a fine beginning.

Exercises

1. Prove that the sum of two consecutive triangular numbers is a square number.

2. Verify that
√

2 +
√

3 is a solution of x4 − 10x2 + 1 = 0.

3. Verify that x = 649, y = 180 is a solution of x2 − 13y2 = 1.

4. The first non-trivial solution of x2 − 3y2 = 1 is x = 2, y = 1. Find four more solutions
using the technique of quadratic irrationals.

5. The first non-trivial solution of x2 − 15y2 = 1 is x = 4, y = 1. Find two more solutions.

6. Use trial-and-error to find the first non-trivial solution of x2 − 6y2 = 1.

7. Find one more triangluar-square number and add your computations to the table.


