
Inside-Out: Recursion vs. Function Application
(Draft 1)

Ted Szylowiec

Recursion is just function applications turned
inside-out. More specificually, certain forms of
multiple recursion, when imagined to be turned
inside-out, become repeated applications of multiple
return-value functions. What do we mean when we
say that repeated function application is recursion
“inside out”? We will examine this analogy through
examples. The code in this article is Scheme R6RS
and the implementation used is Guile 2.0.11.

First, we need a way to compose a multiple return-
value function with itself repeatedly. Scheme pro-
vides the procedure values which acts like the mul-
tiple return-value version of the identity function.
Folding a list of functions with values as the initial
value for the accumulator does the job:

(define (many-compose . funcs)
(fold compose values funcs))

To see how it works, let’s use it on a function that
takes a single argument and returns a single value:
r(x) = x2. Applying this function repeatedly four
times gives

r(r(r(r(x)))) = x16.

In code, we can do the same:

(define (sq u) (* u u))
(define sq4 (many-compose sq sq sq sq))
> (sq4 2)
65536

We will use many-compose in all of our examples.

1 Complex numbers

Rather than iterating r on a real number x, we can
do it n times to a complex number a0 + ib0. As a
function of n, the result would be

f (n) = (a0 + ib0)
2n

.

For example if a0 = 2 and b0 = 3, then iterating four
fimes gives

f (4) = −815616479− 13651680 i.

Examining (a0 + ib0)2n
for the first few n, and with

a little algebra, we can find recursive functions a(n)

and b(n) such that

f (n) = a(n) + ib(n).

These are

a(n) = a(n− 1)2 − b(n− 1)2

b(n) = 2 a(n− 1) b(n− 1). (1)

with the initial conditions

a(0) = a0

b(0) = b0.

The relations (1) define mutually recursive functions
a and b. They both depend on each other. This can be
translated into mutually recursive procedures that
calculate f (n). We first introduce some symmetry
between arguments and return values: make-f will
take the two initial values a0 and b0 as arguments,
and with that, create a function f that returns two
values: a(m) and b(m).

(define (make-f a0 b0)
(lambda (m)

(letrec ((a (lambda (n)
(if (zero? n)

a0
(- (sq (a (- n 1)))

(sq (b (- n 1)))))))
(b (lambda (n)

(if (zero? n)
b0
(* 2

(a (- n 1))
(b (- n 1)))))))

(values (a m)
(b m)))))

Now let’s consider a function F that takes the
current state, say a(n), b(n) and returns the next,
a(n + 1), b(n + 1). The scheme for this function can
be read off from (1):

(define (F a b)
(values (- (sq a) (sq b))

(* 2 a b)))

1



2 Pauli matrices

Notice the symmetry: two arguments and two return
values. This makes it possible to compose F with
itself repeatedly:

(define (make-Fn n)
(apply many-compose (make-list n F)))

Now test all this, to make sure the recursive f does
the same thing as repeated applications of the func-
tion F.

> (define myf (make-f 2 3))
> (myf 4)
-815616479
-13651680

> (define myFn (make-Fn 4))
> (myFn 2 3)
-815616479
-13651680

We have turned the mutual recursion inside-out and
made it into repeated applications of a multiple
return-value function.

But what if we want to raise a0 + ib0 to any power
n, not merely powers of 2n? Can we do it the same
way, by mutual recursion? Yes. First examine com-
plex multiplication of z = a + ib with z′ = a′ + ib′:

zz′ = (aa′ − bb′) + i(a′b + ab′). (2)

We can define a closure that creates a function G
which multiplies its aruments according to (2) and
outputs two values corresponding to the real and
imaginary parts of the result. This way, the func-
tion G is symmetrical in its arguments and its return
values.

(define (make-G a1 b1)
(lambda (a0 b0)

(values (- (* a1 a0)
(* b1 b0))

(+ (* a1 b0)
(* b1 a0)))))

With many-compose, we can create a function Gn that
applies G exactly n times to some initial a0 and b0.
In other words, Gn will multiply a0 + ib0 n times by
some a + ib which was made part of the closure G.

(define (make-Gn n G)
(apply many-compose

(make-list n G))))

For example, if we define G to be the function that
multiplies something by 2 + 3i, then applying G 15
times to 2 + 3i should give (2 + 3i)16.

> (define G (make-G 2 3))
> (define G15 (make-Gn 15 G))
> (G15 2 3)
-815616479
-13651680

Which is correct.
The above analysis using repeated function appli-

cations should give us enough clues for constructing
a mutually recursive procedure that does the same
thing. From the fact that G takes two arguments and
returns two values, we can guess that the mutual re-
cursion will involve two functions, and the schema
for these functions will look a lot like the insides of
function G.

(define (make-g m a1 b1)
(lambda (a0 b0)

(letrec
((a (lambda (n)

(if (zero? n)
a0
(- (* a1 (a (- n 1)))

(* b1 (b (- n 1)))))))
(b (lambda (n)

(if (zero? n)
b0
(+ (* a1 (b (- n 1)))

(* b1 (a (- n 1))))))))
(values (a m)

(b m)))))

This creates a closure that multiplies something n
times by a1 + ib1. Let’s create a g that multiplies
something fifteen times by 2 + 3i, and apply it to
2 + 3i. We should get the same as above.

> (define g (make-g 15 2 3))
> (g 2 3)
-815616479
-13651680

And there we have it: repeated applications of G
have been turned inside-out into a mutually recur-
sive procedure g which does the same thing.

2 Pauli matrices

Any 2x2 matrix q with real or complex elements can
be represented as a linear combination

q = wI + xσ1 + yσ2 + zσ3



Pauli matrices 3

where I is the identity matrix and σ1, σ2, σ3 are the
Pauli spin matrices:

I =
(

1 0
0 1

)
σ2 =

(
0 −i
i 0

)

σ1 =

(
0 1
1 0

)
σ3 =

(
1 0
0 −1

)
.

The Pauli matrices obey the following multiplica-
tion rules:

σ1σ2 = iσ3 σ2σ1 = −iσ3

σ2σ3 = iσ1 σ3σ2 = −iσ1

σ3σ1 = iσ2 σ1σ3 = −iσ2

and
σ2

1 = σ2
2 = σ2

3 = I2 = I.

These multiplication rules are summarized by the
following easy-to-remember counter-clockwise and
clockwise diagrams:

σ2

σ1σ3

iσ3iσ1

iσ2

σ2

σ1σ3

−iσ3−iσ1

−iσ2

Suppose q and q′ are two 2x2 matrices expressed
as Pauli combinations:

q = wI + xσ1 + yσ2 + zσ3

q′ = w′ I + x′σ1 + y′σ2 + z′σ3.

Multiplication of q and q′ goes like this:

qq′ = AI + Bσ1 + Cσ2 + Dσ3

where

A = ww′ + xx′ + yy′ + zz′

B = w′x + wx′ + i (y′z− yz′)
C = w′y + wy′ + i (z′x− zx′)
D = w′z + wz′ + i (x′y− xy′) (3)

Multiplication is, in general, non-commutative, so
qq′ is usually not the same as q′q.

We are interested in finding a recursive procedure
for successive squaring of a Pauli combination q,

analogous to (1) which we found for complex num-
bers. If we set q′ = q in (3) and do some algebra, we
find:

A = w2 + x2 + y2 + z2

B = 2wx
C = 2wy
D = 2wz. (4)

This gives a way to calculate

(wI + xσ1 + yσ2 + zσ3)
2n

by repeated applications of a function H which we
will now define. While the complex version of this
function took two arguments and returned two val-
ues, the Pauli combination version H will take four
arguments and return four values. The definition of
H follows from the scheme in (4).

(define (G w x y z)
(values (+ (sq w) (sq x) (sq y) (sq z))

(* 2 w x)
(* 2 w y)
(* 2 w z)))

The higher-order function make-Hn creates a proce-
dure that applies H n times to its arguments. We
can test the idea on q = I + 2σ1 + 3σ2 + 4σ3 by iterat-
ing q2 four times, which should give q16.

(define (make-Hn n)
(apply many-compose (make-list n H)))

> (define H4 (make-Hn 4))
> (H4 1 2 3 4)
3826362843136
1414131548160
2121197322240
2828263096320

These are the correct values for the coefficients A, B,
C and D if the squaring scheme (4) is applied four
times to the Pauli combination q.

As usual, the mutually recursive version of this, h,
can be deduced from H. It will be a four-way mutual
recursion, and we will return four values just to keep
the symmetry.

(define (make-h w0 x0 y0 z0)
(lambda (m)

(letrec
((w (lambda (n)

(if (zero? n)
w0



4 Fibonacci numbers

(+ (sq (w (- n 1)))
(sq (x (- n 1)))
(sq (y (- n 1)))
(sq (z (- n 1)))))))

(x (lambda (n)
(if (zero? n)

x0
(* 2

(w (- n 1))
(x (- n 1))))))

(y (lambda (n)
(if (zero? n)

y0
(* 2

(w (- n 1))
(y (- n 1))))))

(z (lambda (n)
(if (zero? n)

z0
(* 2

(w (- n 1))
(z (- n 1)))))))

(values (w m) (x m) (y m) (z m)))))

Let’s try it out.

> (define g (make-g 1 2 3 4))
> (g 4)
3826362843136
1414131548160
2121197322240
2828263096320

As expected. Here are two suggestions for exercises.
Using the relations (3), develop recursive and

function-application procedures to raise q to any
power n, analogous to what was done for complex
numbers in (2).

Develop recursive and function-application pro-
cedures for successive squaring and powering of
quaternions. Quaternions are very similar to Pauli
combinations, so this shouldn’t be too difficult.

3 Fibonacci numbers

The current Fibonacci number is the sum of the two
previous ones. In a Fibonacci sequence, the two most
current elements are used to find the next two most
current elements. If a is the most current element
and b is the previous one, the process looks like this:

a, b→ a + b, a (5)

The current becomes the previous, and the new cur-
rent is the sum of the current and previous. Con-
fusing? Not if we rely on the schematic formula

above, from which we can immediately build a func-
tion that, when iterated, returns Fibonacci number
pairs. This function will take two arguments and
return two values.

(define (Fib a b)
(values (+ a b) a))

With the help of many-compose, Fib can be iterated
to produce the nth fibonacci number (and also the
one before it. The iterations begin with initial values
a = 1 and b = 1. Two Fibonacci numbers are ac-
counted for, therefore we need to apply Fib exactly
n− 2 times to get the nth Fibonacci number and it’s
predecessor.

(define (Fibn n)
((apply many-compose

(make-list (- n 2) Fib)) 1 1))

If all you want is, say, the 100th Fibonacci number,
then this is just about the easiest way to get it. No
memoization is necessary.

> (Fibn 100)
354224848179261915075
218922995834555169026

The first value returned is the 100th Fibonacci num-
ber. The second value returned is the 99th Fibonacci
number.

We can turn these function applications inside-out
to create a mutually recursive Fibonacci procedure.
Following the symmetry of the problem, the mu-
tual recursion should involve two functions a(n) and
b(n).

(define (fib m)
(letrec ((a (lambda (n)

(if (= n 1)
1
(+ (a (- n 1))

(b (- n 1))))))
(b (lambda (n)

(if (= n 1)
1
(a (- n 1))))))

(values (a (- m 1))
(b (- m 1)))))

Fibonacci numbers by mutual recursion. This is a bit
unusual. But it works, watch:

> (fib 10)
55
34



A combinatorics problem 5

As with the usual non-memoized recursive proce-
dure for Fibonacci numbers, we can’t do (fib 100)
because of the combinatorial explosion of function
calls.

4 A combinatorics problem

Consider the following combinatorics problem. How
many heads or tails sequences of length n are there
such that they do not contain three consecutive
heads? This well known problem can be solved by
the following higher-order Fibonacci-like recursion

j(n) = j(n− 3) + j(n− 2) + j(n− 1)

and initial conditions

j(1) = 2
j(2) = 4
j(3) = 7.

By analogy with the Fibonacci scheme in (5), we
have the following recipe to generate current and
previous solutions:

a, b, c→ a + b + c, a, b.

Let’s make a function out of this that takes three ar-
guments and returns three values:

(define (J a b c) (values (+ a b c) a b))

Since we already have the first three elements of the
sequence, the nth element can be found by applying
J exactly n− 3 times.

(define (Jn n)
((apply many-compose

(make-list (- n 3) H)) 7 4 2))

Let’s test it. The next few elements of the sequence
are 13, 24, 44, 81, 149 and 274. The 9th element
should be 274.

> (Jn 9)
274
149
81

We also get the two previous elements.
Now then, it’s time to turn Jn inside-out into a

mutually recursive procedure. This time the recur-
sion will involve three functions: a(n), b(n) and c(n).

(define (j m)
(letrec ((a (lambda (n)

(if (= n 1)

7
(+ (a (- n 1))

(b (- n 1))
(c (- n 1))))))

(b (lambda (n)
(if (= n 1)

4
(a (- n 1)))))

(c (lambda (n)
(if (= n 1)

2
(b (- n 1))))))

(values (a (- m 2))
(b (- m 2))
(c (- m 2)))))

Entering (j 9) at the REPL will give 274, 149 and
81.

5 The classic example

Any textbook that discusses mutual recursion will
have this classic example. We want to create a pred-
icate my-even? that determines if a number is even,
by mutual recursion. n is even if n− 1 is odd, and
n − 1 is odd if n − 3 and so on. One function calls
the other as the recursion proceeds down to the base
case.

(define (my-even? m)
(letrec ((e? (lambda (n)

(if (zero? n)
#t
(o? (- n 1)))))

(o? (lambda (n)
(if (zero? n)

#f
(e? (- n 1))))))

(e? m)))

Can this be turned inside out into repeated function
applications? Yes it can. But first we should mod-
ify this to introduce some symmetry. Since there
are two functions involved in the mutual recursion,
there should be two return values. For example, the
first return value can correspond to the evenness of
m, while the second return value to oddness of m.
It’s redundant, but symmetrical.

(define (k m)
(letrec ((a (lambda (n)

(if (zero? n)
#t
(b (- n 1)))))

(b (lambda (n)



6 The classic example

(if (zero? n)
#f
(a (- n 1))))))

(values (a m)
(b m))))

For example:

> (k 10)
#t
#f

The return values tell us that it is true that 10 is even,
and it is false that 10 is odd. We can turn this inside
out, into a function taking two arguments and re-
turning two values, according to the scheme

a, b→ b− 1, a− 1.

We keep applying this until either a or b becomes
zero. If a becomes zero then a was originally even
and b was odd. If b becomes zero then a was orig-
inally odd and b was even. We apply this to a, b
where b is just a− 1.

(define (K a b)
(cond ((zero? a) (values #t #f))

((zero? b) (values #f #t))
(else

(values (- b 1) (- a 1)))))

We have to apply K exactly n times to n, n− 1.

(define (Kn n)
((apply many-compose

(make-list n K)) n (- n 1)))

Let’s test this.

> (Kn 10)
#t
#f

The classic case of mutual recursion has been turned
inside-out into repeated function applications!


