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Consider a particle attracted to an infinitely long
cylinder or linear mass concentrated at the origin. If
the particle is released at a distance R, what is T, the
time of fall?

On pages 76–78 of his classic book, A Treatise on
Dynamics of a Particle1, Peter Guthrie Tait gives solu-
tions to this and other related problems of elemen-
tary mechanics. We will extend Tait’s solution to the
case where the particle is released from a distance R
but does not fall all the way to the origin. Rather, it
falls to a fixed distance R0 from the origin.
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Can we determine T? Or, given T, can we deter-
mine the gravitational constant? We can, in terms of
the error function.

The equation of motion of the particle is

m
d2r
dt2 = mg(r),

where m is the mass of the particle, r is its distance
from the origin at time t and g(r) is the acceleration
of gravity at point r. For an infinitely long cylinder
or wire at the origin, we have

d2r
dt2 = −µ

r
. (1)

If we interpret µ as the universal gravitational con-
stant G times the linear mass density λ of the infinite
cylinder, the product

Gλ

r

ends up having the dimensions of acceleration, as it
should.

1Tait and Steele, Treatise on Dynamics of a Particle, 1900,
MacMillan, London.

After multiplying the equation of motion (1) by
the velocity dr/dt we have:(

d2r
dt2

)
dr
dt

= −µ

r
dr
dt

.

Now both sides can be immediately integrated:

1
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(
dr
dt

)2

= −µ log(r) + C. (2)

Tait says that we can’t integrate this any further,
but he provides an interesting technique for finding
T from (2) by examining the boundary condition of
the problem.

We release the particle at position R. It begins at
rest. Therefore we have the boundary condition

dr
dt

∣∣∣
r=R

= 0.

This condition is satisfied if C = µ log R:
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(
dr
dt

)2

= −µ log(r) + µ log(R)

= µ log
R
r

. (3)

Clearly, when r = R, the right hand side is zero,
which implies that dr/dt on the left is zero too.

Taking the roots of both sides of (3) gives

dr
dt

= −
√

2µ log
R
r

.

We have taken the negative root because r gets
smaller as t increases, so dx/dt is negative. It’s better
to make the sign explicit. Separate the variables,

dt =
−1√

2µ log
R
r

dr

and integrate both sides:∫ T

0
dt =

1√
2µ

∫ R0

R

−1√
log

R
r

dr. (4)

Let’s take a moment to explain the limits of integra-
tion on the left and right hand sides of (4). The par-
ticle begins its journey at time t = 0 and completes
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it at t = T. In terms of position r, this corresponds
to a journey from R to R0. The left hand side of (4)
can be immediately integrated, giving T. If we could
integrate the right hand side, we would have our so-
lution for the fall time. Following Tait’s method, we
make a change of variable by letting

u(r) =

√
log

R
r

.

Under this transformation, the variable r, the differ-
ential dr and the limits of integration R and R0 be-
come:

r = Re−u2

dr = −2Re−u2
u du

u(R) =

√
log

R
R

= 0

u(R0) =

√
log

R
R0

.

Using these transformations on (4), we get

T =
1√
2µ

∫ √log(R/R0)

0

(
−1
u

)
(−2R)e−u2

u du

or,

T =
2R√

2µ

∫ √log(R/R0)

0
e−u2

du. (5)

What seemed like a hopelessly complicated mess
beginning with (4) now falls into place upon intro-
ducing the the error function:

erf x =
2√
π

∫ x

0
e−u2

du.

Rewriting (5) in terms of erf, we have our expression
for the time of fall T:

T = R
√

π

2µ
erf

√
log

R
R0

.

Let’s look at the problem in a different way, if only
to arrange our solution into a more attractive form.

Suppose we could release a particle at a distance
R and measure the time it takes to get to R0. If we
had such data, could we determine the gravitational
constant? In fact our last formula gives us what we
need to do that. We just need to rearrange it a bit:

µ =
πR2

2T2

(
erf

√
log

R
R0

)2

. (6)

I hope you agree that (6) is a remarkably beautiful
expression for µ.

If R0 is made smaller, we approach the case where
the particle falls all the way to the origin, which was
the problem solved by Tait. Let’s recover Tait’s solu-
tion by taking the limit:

R0 → 0, log
R
R0
→ ∞.

But erf ∞ is 1. So (6) becomes

µ =
π

2
R2

T2

which is equivalent to the solution given by Tait.


