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Why competition problems?

Competition problems are often breathtakingly clever or beautiful or both. It’s good to
see beauty in mathematics. By doing beautiful and interesting competition problems you
will learn mysterious things that no teacher teach you directly. Not everything can be
explained on the board. Some things can only be learned by experience and training.

There is no better way to develop your mathematical abilities than by working on
competition problems. You don’t even have to compete in competitions to get the benefits!

I chose interesting problems for this book. Problems that I found personally compelling
and enlightening. It is my hope that the world of mathematics education moves away
from uninspired repetition, drudgery and rote, into a world of beautiful, entertaining and
illuminating competitive and creative mathematics.

Computer programming

A new dimension has been added here: computer programming. We will use Racket to
study and analyze problems to get a deeper feeling for what is going on. There’s nothing
like seeing practical calculations unfolding before your eyes. Programming gives that
experience. You can play with otherwise intractable calculation, experiment, modify, see
what happens, explore possibilities that you would not have time for if you were confined
to paper and pencil.

For us, computer science principles are more important than a particular choice of pro-
gramming language. But whatever language we choose to work in, it must be accessible to
students that are new to programming. I have chosen the Racket programming system for
this book because it’s very easy to set up and learn, and incredibly powerful for expressing
ideas. Racket is a descendant of the Scheme, which is the language used for the famous
textbook Structure and Interpretation of Computer Programs. If you are new to Racket, there
are resources on my website to help you get started. In my experience, Racket has proven
to be a great tool for exploring ideas in computer science and mathematics.
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If you prefer your own favorite programming language implementation, go ahead and
use it! The Racket code in the text can serve as a model for you to do the same in any
language.

Geometric constructions

Get familiar with the techniques of ruler-compass construction: bisection of segments and
angles, constuction of polygons, perpendiculars, parallel lines, etc. Use ruler and compass
wherever you can. Ruler and compass constructions lead to intuitive understanding of
geometry. Never miss an opportunity to translate a competition question into a ruler and
compass construction.

How to use the book

Each section starts with an Olympiad problem or some interesting competition-level prob-
lem. Olympiad problems are hard, but in this book they are broken down into steps that
are easy to understand. Each step is numbered. Work on each step until they are all com-
pletely clear. Then put the pieces together and get a clear understanding of the olympiad
problem.

When you see Racket code, try it out in DrRacket. It’s not necessary to understand
every detail the first time you encounted a piece of code. Try it out. The details will
become clear with practice.



Part 1

Problem 1. Show that two reflections is equivalent to a rotation. Also show that
a rotation through angle 2¢ around point X can be obtained by reflections over
any two lines on X separated by angle ¢.

1. A remarkable idea, which no doubt will be surprising to any who have not seen it before!
It’s difficult to imagine exactly how these two reflections combine to create a rotation, and
why this should be so in the first place. Therefore it pays to examine this in detail from
different points of view. For maximum enlightenment, we will look at it from three points
of view: classical geometry, vectors and complex numbers.

2. What is a reflection? Line AB is the mirror-line. It will do the reflection.

A .

Point S is reflected to point S’ with the following properties: SS’ is perpendicular to AB
and M is the midpoint of SS’. In other words, ZAMS is a right angle and SM = MS'.

3. Begin with mirror-line AB and a point S as in 2. With a ruler and compass, construct
the reflected point S’. You'll have to constuct a line through S perpendicular to AB, then
mark off equal segments, etc.

4. Let X be any point on the mirror-line AB. Prove that the distances from S and S’ to
point X are the same. Also prove that ZMXS = ZMXS'.

This is easily demonstrated by similar triangles. Consider AXMS and AXMS'. By the
properties of reflections 2, both ZXMS and ZXMS' are right angles and SM = MS'. But
also, AXMS and AXMS' share side XM in common. Therefore by side-angle-side (SAS),
the two triangles are congruent! Matching sides and matching angles of these triangles
must be equal. Hence we have XS = XS’ and ZMXS = ZMXS'.

5. Show that reflections preserve distance between points.
Consider a segment PQ and it’s reflected version P’'Q’. By choosing a point X some-
where on the mirror-line AB, we can create similar (in this case congruent) triangles.
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By the properties of reflections, 2, /NXQ = ZNXQ' and ZMXP = ZMXP'. Therefore
it must be that ZPXQ = ZP'X'Q’. By what was proved in 4, XP = XP’' and XQ =
XQ'. Therefore by side-angle-side (SAS), the two triangles APXQ and AP'XQ" must be
congruent. Therefore the segments PQ and P'Q’ have equal length. Reflection preserves
distance between points!

6. Use 4 and the cosine law to form an argument that reflections preserve distance.

7. Let’s show the same thing again: that reflections preserve distance, but this time using
vectors. This is a lot more work than using similar triangles, but it’s interesting and worth
doing.

Refer to the figure in 5 and give some shorter names to important angles:

/MXP=x, /NXQ=PB, ZQXP=a—B=¢.

Fix X to be the origin of all vectors in the figure. The vectors M and N can be found by
midpoints:

— F + 17/) — 6 + 67
M = 5 N = 5
From these we obtain expressions for P’ and 67 :
P-2M-P, Q=2N-0. )

Why did we do this? Because if you examine the figure in 5, vector M is the perpendicular
projection of vector P onto the mirror-line. Likewise for N and Q. Therefore we can
eliminate M and N by expressing them in terms of P and Q. The idea is to express the
reflected points in terms of the original points with a bit of added trigonometry.

Let i be the unit vector in the direction of the mirror-line AB. Since M and N are
projections of P and Q onto the mirror line, we have:

—

M =ilpcosa, N = ilg cos B

where p is the length of vector P and q is the length of vector @) Substituting into (1)
gives
P’ =20pcosa — P, Q = Zﬁqcosﬁ—@). ()



We will do some fancy vector calculations to show that the length of segment P'Q is
the same as the length of PQ. The length of the segment P’'Q’ is the norm HQ P || of the
vector Q _P. Using the expressions (2) for P’ and Q’,

(57—1? — Q +2ii(qcos p— pcos i)
— 0 +20A.

~| wi

Here A is short for g cos p — p cosa. Using HV 12 = V -V, and the fact that dot product is
distributive,

—
I

)-(@Q —P)
+20A)- (P
g-d-2

Q" = P'||> = (
- (P -
_P.P

+ ?Ol Til

P —Q +210A)
PO +4A0-P —4A0-Q +44-1A2,

O

—>

By the defmltlon of dot product P =||P|? = p? and P.0 = pq cos ¢ where ¢ is the
angle between P and Q. Also note that -2 = 1 because # is a unit vector. So, combining
all these, we have

||(§7_17\|2 = pz+q2—2pqcosq>+4Apcosoc—4chosﬁ+4A2
= p*+q*—2pgcos¢ +4A(pcosa —qcos B+ A)

The term p? + g% — 2pq cos ¢ looks familiar. It’s precisely the cosine law expression for the

square of the length of segment PQ, i.e,, ||6 — P|]2. 1t had better be the case, then, that the
term 4A(p cosa — g cos B) vanishes. Let’s see:

A(pcosa —qgcosp+ A) =4A(pcosa —gcos P+ gcos —pcosn)
=0.

It does vanish! Therefore RN
Q" P2 =]Q — P
and P'Q’ = PQ! That was a lot of work to demonstrate something fairly obvious from

similar triangles. But nevertheless it’s interesting how the cosine law appears and the rest
of the complicated expression vanishes.

8. A transformation of the plane transforms all points in the plane into other points in the
plane. P is transformed to P’ and Q is transformed into Q’. An isometry is a very special
transformation: it transforms points but it preserves distance. P is transformed to P’ and Q
is transformed to Q' but PQ = P'Q’. You could say that isometries are among the central
ideas of geometry.

Isometries move some points around the plane while possibly keeping other points
where they are. The identity isometry tranforms every point to itself. All points in the
plane are therefore invariant. A translation isometry shifts all the points in the plane by
some distance in the same direction. Under a translation, no points are invariant. A
rotation is an isometry that moves points around a center by some angle. There is only one
invariant point: the center itself. Finally, a reflection is an isometry that moves all points



from one half of the plane to the other half, and therefore leaves all points on the line
separating the half-planes (the mirror line) invariant.

Isometries of the plane can be defined by what they leave invariant. An isometry that
leaves all points invariant is the identity. If it leaves no points invariant, it is a translation.
If it leaves one point invariant it must be a rotation. If it leaves a line invariant, it must be
a reflection.

We have already shown in 5 that reflections preserve distance between points. Invari-
ance of the mirror line is intuitively obvious, but vectors provide a cute demonstration
anyway.
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9. Move origin off the mirror-lines and repeate the vector analysis.

10. Ok, so two reflections make a rotation. That’s clear now. What rotation? By what
angle? We will now show that if two mirror-lines are separated by angle ¢, then no matter
how they are oriented, the result of reflecting point S over the two mirrors will be S rotated
by 2¢ around the intersection of the mirror-lines.

Lines I; and I, are the mirror-lines. They are separated by angle ¢. The orientation of
these mirrors is determined by «. Point S will undergo the two reflections. We already
know that two reflections make a rotation. But what rotation? In other words: what is
angle 6?

Point S is first reflected over I; giving S’. According to the results of 4, ZSXM =
£S5 XM, with both of these being «. Likewise S’ is reflected over I, giving S”, and ZS'XN =



£S"XN. But by basic geometry both of these are equal to 180 — (a + ¢). Going around X
tull circle and adding all the angles we get:

a+a+180 — (a + ¢) + 180 — (a + ¢) + 6 = 360.

Simplifying, 6§ = 2¢ Notice the amazing effect: the problem does not depend on a. The
mirror-lines can be oriented with any «, and the resulting rotation of S to S” will always
be 6 = 2¢!

11. Explain why ZS’XN = 180 — (« + ¢) and £S"XN = 180 — (a + ¢).
12. Prove that £S5'S" = ¢.
13. Complex numbers application.

14. Ruler-compass exercise: rotate 360 degrees around trianlge angles, using compass copy
technique.

15. Racket applications: rotations around origin, angles between lines, tan formula.

16. All that was very interesting and illuminating, especially the complex numbers stuff.
One cannot help but wonder if there are simple principles or some essential idea by which
the phenomenon can be intuitively grasped—something that would make all this obvious.
Rephrasing the problem from a physics picture (mirrors, light, reflected images, me-
chanical rotation) to a pure geometry picture (lines, circles, theorems) does exactly that.
The relationship between reflections and rotation becomes instantly obvious. So obvious
that we might laugh at all the work we did. Nevertheless it’s a good thing we did all that
work, otherwise we would not appreciate the simplicity and beauty of what comes next.

17. On the left: if lines m and n are separated by angle ¢, and MY, NY are perpendicular to
m, n, then ZMYN is also ¢. In other words, perpendiculars to lines m and n are separated
by the same angle as m and n.

C

On the right: AB is a chord line and O is the center of the circle. C is a point anywhere on
the circumference, but on the same side of AB as center O. If ZACB = 6, then ZAOB will
be 26.

Prove these two classic geometry theorems.

18. Putting these ideas together: m and n are diameter lines. X is the center of a circle
going through point Y.



Because YM = MY’, point Y’ will be on the circle. Since Y'N = NY”, point Y” will also be
on the circle. Because YY’ is perpendicular to m and Y'Y” is perpendicular to n, ZYY'Y”
is equal to the angle that separates m and n. Therefore ZYXY” must be twice YY'Y”: i.e.,
it must be twice the angle separating m and n.

Problem 2. Let F(x) = . Evaluate the sum

4* +2

1 2 1999 2000
Fl— _c kil el I
(2001) +F (2001) footE (2001) +F (2001) ®)
This was from a Korean math competition.

19. This, like most competition problems, seems impossibly hard. It's hard because you
must combine elementary ideas in very clever ways. The ideas, the building blocks of the
solution, are not hard. This problem is a good example of how several mathematical ideas
are combined in beautiful and non-obvious ways to give a simple solution.

20. Take a piece of paper, draw the x—y axes, and plot the curve y = . You don't

4% +2
need a calculator for this. Just examine how the function behaves for impc;;tant values of
x. For example, when x — oo (x goes to infinity), y — 0 (v goes to zero). Sometimes you
have to use your intuition to guess what values are important. Find where y goes when...
(@) x —» —oo.
(b) x — 0.
() x—>1/2
(d) x - 1.
Now it’s easy to sketch the curve y = F(x). Do it.

21. Reflect and shift operations allow you to easily sketch new functions from old ones that
you know already. Let’s look at reflect first.

The operation x — —x reflects the curve over the y-axis. Think of the y-axis as a mirror.
For example, y = x is the cubic curve and if you change x to —x you get the mirror image
of the cubic curve (where the y-axis is the mirror.)

For each of these, sketch the curve and then sketch the curve with x — —x:



(@) y=x, —owo<x<owm.

(b)) y=x, —o<x<ow.

(©)y=—-x, —0<x<ow.

d y=1/x, —oo<x<o0.

(e) y=2%, —w<x<on

) y=x%, —o<x<on.
Explain the last one.

22. Plot y = F(—x) by doing a a reflection operation x - —x on y = F(x) = 495% Sketch
the result. You don’t need to plot any points or to do any thinking beyond using your

imagination to reflect y = F(x) over the y-axis.

23. Can you think of an operation on a function f(x) that will reflect the curve y = f(x)
over the x-axis?

24. The other graph operation we need for this problem is shift. Given some function f(x),
the operation x — x + 1 shifts the curve y = f(x) one step to the left. So, for example, since
we know what y = x? looks like, it’s easy to plot y = (x + 1)2. Just shift everything to the
left by 1. No further thinking is necessary.

Plot these curves by doing a left shift operation on curves that you already know. Each
one should take only a few seconds of thinking.

(@) y = (x +1)3. Start with y = x3.

(b) y = x + 2. Start with y = x.

() y = —(x+2). Start with y = —x.

d) y=1/(x+1).

(e) y = 2x+1

(B) y = (x+3/2)%

25. Likewise the transformation x — x — 1 will shift the curve y = f(x) one step to the right.
Now you can plot y = (x — 1)? instantly, without thinking for more than a second. Just
take the curve for y = x? and shift everything to the right by 1.

Plot these curves by doing right shift operations on curves that you already know.

(@) y = (x—1)>%

(b) y =x-5.

() y=—(x—1). Start with y = —x.

(d) y = 1/(x - 2).

(e) y=2""1.

(B y=(x—3/2)%

26. Plot y = F(x +1) and y = F(x —1). Start with the curve y = F(x) which you already
did. Use your imagination to do the shifts. Don’t do any thinking beyond that.

27. Can you think of operations that shift a curve up and down, rather than left and right?

28. Reflect and shift operations can be combined. You can start with a curve, do a shift, and
then do a reflect. For example, starting with y = f(x), we can instantly plot y = f(—x + 1)
by first doing a left shift x — x + 1 and then a reflection x — —x. Notice that it’s not the
same if we do the operations the other way around! Starting with the curve y = f(x), if we
first do a reflect x — —x and then a left shift x — x +1, we get f(—(x+1)) or f(—x —1),
which is not the same.

For the given curve, do the operations in order and plot the result. Don’t calculate
anything. Use your imagination only.
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(@) y = x3, shift x — x — 1, then reflect x — —x.
(b) y = x>, x - —x, then x - x — 1.
(0)y=2,x—>x+1,thenx - —x.
d)y=2%x—>—x,x—>x+1
() y=x%,x —>x—2,x > —Xx.
) y=x%x—>—x,x —>x—2.

Explain what is going on in the last two.

29. Plot the given function by doing two operations on a simpler function that you already
know how to sketch.

(@) y = (—(x —2))>. Start with y = x3. First do x — —x, then do x — x — 2.

(b) vy = (1 —x)3. Write as y = (—(x — 1))® and do similar to above.

() y = —(x —1). Start with y = x.

(d) y =1/(—x +2). Start with y = 1/x.

(e) y =2~ (1), Start with y = 2*.

30. Draw the x—y axes. Plot the curve y = F(x) again. Now, on top of that, ploty = F(1 — x)
by doing operations. 1 — x is the same as —x + 1, so it is clear that you have to do a
left shift by 1 first, followed by a reflection (not the other way around!) Or, if you like,
1—x = —(x—1),s0 you can do a reflection followed by a right shift by 1. If you do it right,
both curves will go through the point (%, %)

31. Look at the curves y = F(x) and y = F(1 — x). Notice that when F(x) is close to 1,
F(1 —x) is close to 0. And when F(1 — x) is close to 1, F(x) is close to 0. Also, when F(x)
is 1/2, F(1 — x) is also 1/2. Thinking about all this, we can make take a guess, based on the
shape of these curves, that F(x) + F(1 — x) is always 1. If this guess is true, then it should
be possible to prove that

F(x)+ F(1—x)=1.

Go ahead and prove this by algebra! This result is the key that is needed to solve the
original competition problem.

32. Consider this sum:
1+2+---+50+51+---4+99 + 100

You want to find the result. You don’t have to sum the terms in the order that they are
given. You can rearrange them and sum them in some other way. This is another key idea
in competition problems.

Take the first term, 1, and the last term, 100. Add them. You get 101. Now take the
second term, and the second-last term, and add them: 2 4+ 99 = 101. Continuing this way
we see there are 50 pairs of numbers that can be added to form 101. Thus the sum is
50 x 101 = 5050.

Use the same idea to find the following sums. Note that when there is an odd number
of terms, there will be a term in the middle that is left over, and cannot be paired with
another term.

(@ 1+2+---+49+50.

(b) 1+2+---+50+---+ 100+ 101.

(c) 25+26+---+ 80;

(d) 30+31+---+70;

(e 1+3+5+---4+95+97 +99.
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33. And now you are ready to solve the competition problem! Use the idea of pairing
tirst and last terms, second with second last term, etc., together with the relationship
F(x) 4+ F(1 — x) = 1. The rest is easy!

34. I know what you're thinking. Why did I have to go through all that plotting stuff when I
could have just guessed that this is one of those problems where I have to add terms in some peculiar
order, and go from there? Good question. The reason is that the plotting exercises give depth
to your understanding of this problem and others like it. And, most of all, the way it gels
together is beautiful.

35. So then, do it by guessing that the leftmost terms added to the rightmost terms give
some special value. Return to (3), take the leftmost term and add it with the rightmost:

2 2
40T 42 4501 42

Do the algebra and make sure you get 1. Now try the second leftmost term, and the second
rightmost:

2 N 2
4201 +2 4301 42
and verify that this is 1. So you feel justified in guessing that these partial sums are

all 1, which then leads you the idea of proving that it must always be so by showing
F(x)+ F(1 —x) =1 and so on.

36. Evaluate the sum
641 642 5559 5560
F (6201) +F (6201) ootk (6201) +F (6201) '
37. Let’s write Racket programs that compute the sum (3) by brute force. We will use
named-let and recursion, which is an elegant technique: let loop... creates a function
named loop with variables k and result initialized to 1 and 0. Then loop is called again

and again, incrementing k and accumulating the sum into result . Finally loop returns
result when k goes above 2000.

#lang racket

(define (f x)
(/ 2
(+ (expt 4 x) 2)))

;; Using named-let and recursion.
(define (do-sum)
(let loop ((k 1) (result 0))
(if (> k 2000)
result
(loop (+ k 1)
(+ result (f (/ k 2001)))))))

Test it in DrRacket:
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> (do-sum)
999.9999999999984

Almost 1000. Close enough. Unless we use only integers and rational numbers (here
we are using fraction exponents, which yield real numbers), machine calculations are not
going to be perfect.

It’s interesting to compare this recursive style to other styles of expressing the same
computation. Here is the same thing but using a for-loop and accumulator. The accumula-
tor result is initialized to 0, then for/fold iterates through the range 1 to 2000, the steps
are ‘folded’ together into result according to the expression in the body of the for-loop.

;5 Using for-loop with accumulator.
(define (do-sum-2)
(for/fold ((result 0))
((k (in-range 1 2001)))
(+ result (f (/ k 2001)))))

Now, using lists and higher-order functions (map , foldl etc.) First, range creates a big
list of integers from 1 to 2000. These integers are turned into fractions by mapping. Then
the function F(x) is mapped on to each fraction. Finally the whole thing is folded together
by addition, with initial value 0.

;> Using lists and higher-order functioms.
(define (do-sum-3)
(foldl + O (map f (map (lambda (x)
(/ x 2001))
(range 1 2001)))))

38. Try do-sum-2 and do-sum-3 in DrRacket. Make sure they give correct answers.
39. Write a Racket program to verify your answer for 36.

40. Challenge. Consider the series

sqf0ov 1 1 1
2x3x4 4x5x6 6x7x8 8x9x10 '

Write Racket functions that compute N terms of this series. Do it in three different
styles: by named-let and recursion, by for/fold and then by higher-order functions. You
should start off the result with real initial value 0.0 rather than integer 0, to force Racket
to compute with real numbers rather than fractions (which become huge as N becomes
large). Compute this sum for N = 5, N = 10, N = 100 and so on. What do you think this
series converges to as N — o0? A standard trick for handling the alternating + and — signs
is to use —1 raised to an appropriate power.

Problem 3. Given angles A, B and C of a triangle, find ¢ = ZBAM where M is
the midpoint of side BC. From a Russian problem book.



13

41. Notice that we are only given the angles of the triangle and nothing else. We do not
know the lengths of the sides. Therefore our solution must express ¢ in terms of these
given angles. We may involve the sides or other quatities while we are working toward
the solution, but the final answer must be in terms of A, B and C only. It’s critical to read
between the lines of a problems this way.

42. The problem can be solved by applying the cosine law, the sine law and some ideas
about parallelograms and similar triangles. Reflect on this during the study of this prob-
lem and others like it in this book. Parallelogram theorems and similar triangles appear
universally in all that we do concerning geometry. The cosine and sine laws are themselves
expressions of ideas about parallelograms and similar triangles, as we will see.

43. Here is a figure corresponding to the problem, using standard conventions for labeling

the parts of a triangle: side opposite to angle A is called a, etc.

C

A

We have drawn the median line AM and the angle ¢ that is to be found. Draw this
tigure carefully yourself and construct the midpoint M and the median line AM by ruler
and compass.

44. While most high-school textbooks present the cosine law as a tool for solving triangles,
we will take a different (and much better) approach. The cosine laws are statements about
parallelograms. We can say laws rather than law because there are two of them. It is best
to learn both. Consider a parallelogram ABCD. The cosine laws tell you the lengths of the
diagonals in terms of some data about sides and angles.

C C

AB

There are two diagonals: DB and AC, and so there are two forms of the cosine law
telling you the lengths of these diagonals. Given angle A and the sides AD and AB
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adjacent to it, we have for diagonal DB:
DB* = AB* + AD* —~2 AB AD cos A
and we also have (this is the part nobody talks about) for diagonal AC:

AC? = AB? + AD? +2ABADcos A

45. Vectors provide a beautiful demonstration of the cosine laws in a unified manner which
you are unlikely to ever forget. Expressing lengths in terms of dot product of vectors, we
have, for the first figure of 44:

DB? = |AB —ADJ* = (AB—AD)-(AB — AD)
_AB-AB+AD-AD —2AB-AD
— AB%> + AD?* —2 AB AD cos A.

For the second figure,

AC? = |AB + AD? = (AB + AD) - (AB + AD)
— AB-AB+AD-AD +2AB-AD
= AB? + AD?> + 2 AB AD cos A.

And there you have it! Cosine laws, rolled into one beautiful show, if you happen to
know just a little bit about vectors. You see? It’s not really about triangles. It’s about
paralellograms.

46. Using the cosine laws, prove that the sum of the squares of the diagonals of a parallel-
gram is twice the sum of the squares of the sides.

47. A parallelogram can be constructed from triangle ABC in 43 by adding some extra seg-
ments (in blue). We have added CP parallel to AB and BP parallel to AC, thus completing
parallelogram ABPC out of the original triangle. Why do this? So that we can apply cosine
laws!
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Also notice that we have finished the diagonal AP by drawing MP, extended AB to AQ
and dropped a perpendicular PQ on it from P. We can find cos ¢ by trigonometry:

adjacent ~ AB + BQ

cosp = hypotenuse AP @)

Since ABPC is a parallelogram, ZPBQ is the same as ZA and AC = BP. The segment BQ
can be found by trigonometry:
BQ = ACcos A.

Plugging this into (4) and using the cosine law to find diagonal AP, we have:

cosd — AB + AC cosA
VAB2+ AC2 +2ABACcos A

Or, using the convenient labels a, b, c for the side lengths, as in 43:

cos — c+bcosA
V2 + 12 +2bccos A

(5)

Let’s pause here. This isn’t finished because we are not given any information about the
sides of triangle ABC and therefore b and ¢ should not appear in the final formula for
cos ¢. Nevertheless this is progress and we are almost there.

Problem 4. Consider a triangle where the medians to sides a and b are per-
pendicular. Construct an example of this triangle by ruler and compass. Then
construct an example where such a triangle does not exist! Finally, determine the
conditions on 2 and b for such a triangle to exist. Adapted from a Russian collec-
tion. One of my favorite problems.

48. This problem contains such a wealth of wonderful ideas that every student on Earth
should work through it at least once!



