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Let’s say we have a set S with n elements. We know from
elementary combinatorics that S has 2" subsets. Now, if
we count all the elements in all these subsets, what is the
total?

For example: S = {a,b,c}. We have six subsets:

{3 {a} {0} {c}
{a,b} fa,c} {bc}
{a,b,c}.

The total number of elements in these subsets is 12. What
if we wanted to compute this total for any set S? We can
write functions in Racket to study this problem. We will
end up discovering something interesting about binomial
numbers.

Subsets

We will represent sets by lists. We should keep in mind
that lists and sets are not quite the same idea. Order does
not matter in a set. The sets {4,b,c} and {c,b,a} are the
same. This is not the case for lists. Order does matter:
’(a b c) and ’(c b a) are not the same. This detail is
important if we ever want to check the equality of sets.

Begin the project by telling the Racket system to use the
Racket language and to load the rackunit testing library.
Testing is something you should always do when writing
programs. Racket makes testing very easy, as you will
see.

#lang racket
(require rackunit)

We need a function that computes all the subsets of a
set. Racket has all kinds of functions to do algebra with
sets in the racket/set library. But we don’t need all of
that so I'll give you a little function that computes all sub-
sets using recursion and some list kung-fu:

(define (subsets set)
(if (empty? set)
(1ist empty)
(let ((rst (subsets (cdr set))))
(append rst
(map (lambda (x)
(cons (car set) x))

rst)))))

This is a very useful function to have in your library. Let’s
try it.

> (subsets ’(a b c))
(O () () (bc) (a) (ac) (ab) (abc))

> (subsets ’(a b c d))

() (@ () (cd) (B (b d) (bc) (bcd
(a) (ad) (ac) (acd) (ab) (abd
(abc) (abcd)

Let’s add some basic tests for the subsets function.
The empty set has exactly one subset. A set of one el-
ement has exactly two subsets. A set of 10 elements
has 1024 subsets. Our subsets function needs to pass
these tests. The rackunit library provides the handy all-
purpose check-equal? function for writing such tests.

(check-equal? (length (subsets ’())) 1)
(check-equal? (length (subsets ’(a))) 2)
(check-equal? (length
(subsets
’a@bcdefhijk))
1024)

If the tests pass, Racket won't say anything. But if they
fail, Racket will complain and give you information as to
which test failed and what went wrong.

Generating sets

In the last test above, we had to type in a set with 10
elements. It’s tedious to have to specify sets by typing in
each element. It’s better to write a Racket function to do
it. We don’t care what these elements are exactly. They
could be numbers, or symbols, or strings, or something
else. So let’s stick with numbers. Using recursion, we
can easily write a function that generates sets of whatever
length we like.

(define (make-set-helper n result)
(if (< n 1)
result
(make-set-helper (- n 1)
(cons n result))))
(define (make-set n)
(make-set-helper n empty))

(check-equal? (make-set 0) ’())
(check-equal? (make-set 1) ’(1))

I included two tests that make-set has to pass. You can
play with make-set to see how it works:

> (make-set 5)
’(1 2 3 4 5)

> (make-set 10)
’(1 23456789 10)



Lengths of subsets

By mapping length onto the list of subsets, we get a list
of the sizes of each subset of S. For example, let’s work
with a set S that has 4 elements.

> (define S (make-set 4))
> S
(12 3 4)

> (map length (subsets S))
’(0112122312232334)

Those are the sizes of all the subsets. To get the total
number of elements in all subsets, we add these numbers
up. That’s the total we talked about at the beginning of
this paper.

Of course we are not going to add all these numbers by
hand. The point is to get the computer to do it. This is a
typical task for recursion.

(define (sum-list-helper mylist result)
(if (empty? mylist)
result
(sum-list-helper (cdr mylist)
(+ (car mylist)
result))))
(define (sum-list mylist)
(sum-list-helper mylist 0))

(check-equal? (sum-list empty) O0)
(check-equal? (sum-list ’(1)) 1)
(check-equal? (sum-list (1 2 3)) 6)

Using sum-1ist we easily determine the total for all the
subsets of a set of 4 elements:

> (sum-list (map length (subsets S)))
32

We now have the components we need to write a pro-
gram that computes the total number of elements in all
subsets of any set S of size n. Call this function T. At the
beginning of this article we determined that T(3) is 12, so
this will be one of the tests T must pass.

(define (T n)
(sum-1ist
(map length (subsets (make-set n)))))

(check-equal? (T 0) 0)
(check-equal? (T 1) 1)
(check-equal? (T 3) 12)

Results

With the help of the T-function Racket program, we get
these results:

n T(n)
2=2114=22

3 12
4=22132=2°

5 80

6 192

7 448

8§ =23 | 1024 = 210

What is the pattern here? Notice that when 7 is a power of
two, T(n) is also a power of two. Inspecting these values,
we guess that when 7 is a power of two,

T(n) — ontlogyn—1 _ ,on—1

We can verify that this formula works for the other values
of n in the table.

From basic combinatorics, the number of subsets with k
elements is (}). Since each of these subsets has k elements,
the number of elements in all the subsets of size k is

(&)

The total number of elements in all subsets of all sizes is

therefore
n n n n
0(0) +1(1> +2(2> +---+n(n>.

Because of our Racket calculations, we believe that this
expression is equal to n2" 1. With the help of computer
programming, we have discovered a beautiful property of
binomial numbers:

oft) (3) sa(g) o ee(y)

A Combinatorial proof

Computer programming led us to discover a remarkable
relationship involving binomial numbers. However, we
still have to give a mathematical proof of this relation-
ship. Computer computation can only lead us in the right
direction. It is not a proof.

Consider this set with n elements:

S={ab,cd,...}.

How many times does a appear in the subsets of S?
First generate all subsets that do not have a in them. Those
are the subsets of {b,c,d,...}. There are 2" ! such subsets
that do not contain a. Then we add a to each one. We have
constructed all the subsets that contain a. There are 2!
of them. Therefore the symbol a occurs 2"~! times in all
the subsets of S.

We can do the same for b and ¢ and so on. Each one
appears 2" ! times in all the subsets. There are 1 symbols
in all, therefore the total number of symbols in all the
subsets of S is n2" 1. O



