
Computing Binomial Numbers by Recursion
Ted Szylowiec

1 Introduction

It’s possible, of course, to compute binomial num-
bers using loops and the definition of binomials in
terms of factorials:(

n
k

)
=

n!
k!(n − k)!

. (1)

But we want to find a more elegant way of comput-
ing them by recursion. The strategy for writing re-
cursive programs is to first find a relationship that
breaks down the problem into smaller versions of the
same problem. Once we have this relationship, it’s
often easy to write the code that implements it.

However, if we try to write recursive programs
without a clear idea of how our computation is bro-
ken up into smaller, similar computations, the task of
programming becomes hopelessly confused. I think
that this wrong approach is what many students try
to do, hence their inability to write recursive proce-
dures and their frustration with the concept of recur-
sion itself.

In this article I will give two examples of writing
recursive procedures by first looking for a relation-
ship that breaks down the problem into smaller ver-
sions of the same problem.

2 The n/k identity

Many number theory books have chapters on bino-
mial numbers and their peculiar properties. Most
books on combinatorics do as well. The number
of identities and relationships involving binomial
numbers is bewildering. Despite that, we can look
through some of these books to find an identity or
relationship that has the right form: it breaks down
the problem into smaller versions of the same prob-
lem. In other words, we are looking for an identity
whereby binomial coefficients are written in terms
of smaller binomial coefficients. And of course we
want a simple one. Such as this one:(

n
k

)
=

n
k

(
n − 1
k − 1

)
. (2)

As far as I know, it doesn’t have a name. We can
call it "the n/k identity." It is clear that (2) has the
form we are looking for: the binomial number (n

k) is
computed in terms of a smaller binomial (n−1

k−1).

Before we do anything with the n/k identity, let’s
prove it. First, an algebraic proof using (1).

n
k

(
n − 1
k − 1

)
=

n
k

(n − 1)!
(k − 1)!((n − 1)− (k − 1))!

=
n
k

(n − 1)!
(k − 1)!(n − k)!

But n(n − 1)! is just n! and k(k − 1)! is just k!, so we
have

n
k

(
n − 1
k − 1

)
=

n!
k!(n − k)!

=

(
n
k

)
.

Next, a combinatorial proof. Suppose we have n
people to choose from and we want to choose a team
of r players along with a team captain. Choose a
team first, and then choose a captain from the team
members. There are (n

k) ways to choose the team and
k ways to choose the captain. In all there are

k ×
(

n
k

)
possibilities. Now choose the captain first. There are
n ways to do that. Once we have the captain, we
must choose the other k − 1 team members from the
n − 1 people left for us to choose from. There are

n ×
(

n − 1
k − 1

)
ways to chose a captain and a team this way. Since
the two ways we have described both count the same
thing, they must be equal. Therefore (2) follows.
This is a typical strategy in combinatorial proofs.
Counting the same thing in two different ways im-
plies both results must be equal.

The n/k identity gives us the right sort of decom-
position for a recursive procedure. We keep apply-
ing it, making the binomial computation smaller and
smaller, until we reach a point where the compu-
tation cannot be reduced further. These stopping
points are sometimes called base cases. Here, the
base case is at k = 0, where (n

0) = 1.
Begin our Racket program and add the unit testing

library.

#lang racket
(require rackunit)

1



2 The Pascal identity

We should check if k is greater than n. If so, re-
turn 0 immediately. This check is not part of the
recursion loop—it is just a check on the arguments.
So we put it outside of cond. Our first recursive pro-
cedure, binomial1, follows effortlessly from the base
case and the n/k identity:

(define (binomial1 n k)
(when (> k n) 0)
(cond ((= k 0) 1)

(else (* (/ n k)
(binomial1 (- n 1)

(- k 1))))))

It is straightforward to make a tail-recursive ver-
sion of binomial1 by using a helper function and an
accumulator variable, which we call result. When
we hit the base case, result is returned.

(define (binomial2 n k)
(define (helper n k result)

(cond ((= k 0) result)
(else (helper (- n 1)

(- k 1)
(* (/ n k)

result)))))
(if (> k n)

0
(helper n k 1)))

We have several binomial functions to test. Each
of them must pass a standard set of tests. To make
testing easier, write a function check-binomial that
can test any of them.

(define (check-binomial my-binomial)
(check-equal? (my-binomial 1 3) 0)
(check-equal? (my-binomial 0 0) 1)
(check-equal? (my-binomial 1 0) 1)
(check-equal? (my-binomial 1 1) 1)
(check-equal? (my-binomial 6 0) 1)
(check-equal? (my-binomial 6 6) 1)
(check-equal? (my-binomial 6 3) 20))

Run the standard tests on binomial1 and binomial2.

(check-binomial binomial1)
(check-binomial binomial2)

3 The Pascal identity

Looking through the books again, we find the fol-
lowing identity:(

n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
. (3)

This is the most fundamental and most important of
all binomial identities. It is a mathematical expres-
sion of the way we construct Pascal’s triange: the
current element is made of the sum of two elements
in the row above.

For example, the element at n = 5, k = 2 is the
sum of the two elements above it:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
10(

5
2

)
=

(
4
1

)
+

(
4
2

)
= 4 + 6 = 10.

Let’s prove (3) by a combinatorial argument. We
have n objects. One of these objects is special, call
it x. How many ways can we choose k objects such
that x is not among them? It’s the same as deleting
x from our set of objects and choosing k from the re-
maining n − 1 objects: (n−1

k ) ways. Next, how many
ways can we choose k objects such that x is among
them? Choose x first. We now have n − 1 objects
to choose from. Since we made one choice already,
we have k − 1 choices left. Total ways are (n−1

k−1). The
sum of all the ways with x and all the ways without
x is just all the ways to choose k from n, i.e., (n

k).
The Pascal identity (3) decomposes the computa-

tion of a binomial number into a computation of the
sum of smaller binomial numbers. It makes a perfect
foundation for a recursive procedure.

A recursive procedure based on (3) requries three
base cases. When k = 0 and when k = n, the bino-
mial number is 1. If you examine the right hand side
of (3) you’ll see that it’s possible for n to become less
than k during the process of the recursion. This is
the third base case. Unlike what we did before, we
must move the check for k > n into the loop of the
recursion and return 0 in the case of k > n.

The rest is a straightforward translation of (3) into
Racket code:

(define (binomial3 n k)
(cond ((> k n) 0)

((= k 0) 1)
((= k n) 1)
(else (+ (binomial3 (- n 1) k)

(binomial3 (- n 1) (- k 1))))))

Let’s not forget the tests!

(check-binomial binomial3)


