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1 Number theory

Fermat numbers, F(n) = 22n
+ 1, are coprime to

each other.

Two numbers m and n are coprime if they have no fac-
tors in common except 1. In other words, if m and n
are coprime then (m, n) = 1, where (m, n) is the greatest
common divisor of m and n. We want to show that F(n)
is coprime to all the previous Fermat numbers

F(0), F(1), . . . , F(n− 1).

Instead of testing each of these individually, take the
product of all of them:

P(n− 1) =
n−1

∏
k=0

F(k).

Now, if we can show that (F(n), P(n− 1)) = 1 then we
have shown that F(n) has no factor in common with any
of the Fermat numbers that make up P(n − 1). Look at
the form of P(n− 1):

P(n− 1) = (22n−1
+ 1) · · · (24 + 1)(22 + 1)(2 + 1).

Something very interesting happens when we multiply
the right hand side by (2 − 1), which we can do, since
(2− 1) is just another way of writing 1. The factors in the
product collapse into a simple form by repeatedly apply-
ing the algebra rule for the difference of two squares:

P(n− 1) = (22n−1
+ 1) · · · (222

+ 1)(221
+ 1)(2 + 1)(2− 1)

= (22n−1
+ 1) · · · (222

+ 1)(221
+ 1)(221 − 1)

= (22n−1
+ 1) · · · (222

+ 1)(222 − 1)
...

= (22n−1
+ 1)(22n−1 − 1)

= 22n − 1.

This can be written in terms of F(n):

P(n− 1) = F(n)− 2. (1)

Suppose that F(n) and P(n− 1) have a factor q in com-
mon. If q divides F(n) and q divides P(n − 1) then ac-
cording to (1), q divides 2. Therefore the only possible
values for q are 1 and 2. But Fermat numbers are all odd,
so q cannot be 2. Therefore we have

(F(n), P(n− 1)) = 1

The Fermat number F(n) is coprime to all previous Fer-
mat numbers. Since n can be anything, any Fermat num-
ber is coprime to all others.

2 Combinatorics

If a + b + c + d + · · · has m terms, then the maxi-
mum coefficient in the expansion of

(a + b + c + d + · · · )n

is
n!

(q!)m(q + 1)r

where q is the quotient of n/m and r is the remainder.

The coefficent of the term

an1 bn2 cn3 · · ·

where n1 + n2 + · · ·+ nm = n, is given by the multinomial

n!
n1!n2! · · · nm!

. (2)

This coefficient is largest when the denominator is as
small as possible. Because factorials grow so fast, this can
only happen when each of the m numbers n1, n2,. . . are
as close to each other as possible. Before we go on we
should make this more precise and give an argument as
to why it should be so.

Let n1 + n2 + · · ·+ nk = N. Then n1!n2! · · · nk! is
smallest when n1 = n2 · · · = nk.

Let n1 = n2 · · · = nk = n. We have n1!n2! · · · nk! = (n!)k.
Let’s make a deviation in some of the ni. We will make
one larger by 1. If we do so, another ni will have to be
decreased by 1, so that the sum of the ni remains N. We
have:

(n + 1)! (n− 1)! (n!)k−2 = (n + 1) n! (n− 1)! (n!)k−2

= (n + 1)(n− 1)! (n!)k−1.

But (n + 1)(n− 1)! > n!. Therefore

(n + 1)! (n− 1)!(n!)k−2 > (n!)k.

A small deviation from equality gives a larger value for
the product of factorials.

We must therefore find a way to either make all the ni
equal, or make them as close to each other as possible.

This is equivalent to a combinatorics problem: how can
we distribute n balls into m boxes such that each box gets
the same number of balls (or nearly)? Each box must have
at least q balls, where q is the quotient of n/m. There may
be balls left over. The remainder r must be distributed
to r different boxes to ensure that the number of balls in
two different boxes never differ by more than one. This
is a fantastic way of thinking about Euclidean division. If
there are n balls and m boxes then

n = qm + r, 0 ≤ r < m
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2 Analysis

gives a way to distribute the balls so that each box has
nearly the same number. The dividend is the number of
balls, the divisor is the number of boxes, the quotient is
the the number of balls each box gets initially, and the
remainder is the number of boxes that must get an extra
ball.

After we perform this distribution, m of the boxes will
have q balls in them, and r of the boxes will have q + 1
balls. Therefore we have

n1!n2! · · · nm! = q! q! · · · q! (q + 1)! (q + 1)! · · · (q + 1)!

where there are m factors of q! and r factors of (q + 1)!.
Putting this into (2) gives

n!
q!m(q + 1)!r

, n = qm + r, 0 ≤ r < m (3)

It is instructive to see formula (3) in action. Suppose we
want the maximum coefficient in the expansion of

(a + b + c)8.

Here, n = 8 and m = 3. Euclidean division gives q = 2
and r = 2. In other words, 8 balls distributed into 3 boxes
by putting 2 balls in one of them and 2+1 balls in the other
two boxes. By (3),

8!
(2!)1(2 + 1)! 2 = 560.

Some further examples:

Expression n m n = qm + r Maximum

(a + b)10 10 2 10 = 5× 2 + 0 252

(a + b)11 11 2 11 = 5× 2 + 1 462

(a + b + c + d)9 9 4 9 = 2× 4 + 1 7560

You can check these with a computer algebra system like
Maxima1 or SageMath2.

3 Analysis

Let a1, a2, . . . an ≥ 0 be n real numbers. Then

n√a1a2 · · · an ≤
a1 + a2 + · · ·+ an

n
. (4)

This is called the Arithmetic-Geometric Mean inequality.
It says that the geometric mean of n numbers is always
less than or equal to the arithmetic mean. This is a very
important inequality. Many problems can be solved by it.
It pays to know a good way to prove it. The proof pre-
sented here is based on the one discovered by the Hun-
garian mathematician George Polya.

If one of the ai is zero, then (4) is trivially true. So we
consider only the case where ai > 0.

The function ex has the property that at any point x,
the slope of the tangent to the curve y = ex is also ex.

1Get Maxima here: http://maxima.sourceforge.net
2Get SageMath here: http://www.sagemath.org/

Therefore at x = 0 the slope of the tangent line is e0 = 1,
and the equation of the tangent is y = 1 + x. Since ex is
convex and always greater than zero, it will remain above
the tangent line.

−1 −0.5 0.5 1

1

2

3

4

1 + x
ex

From this argument we have established:

1 + x ≤ exp(x). (5)

Let A be the average of the ai:

A =
a1 + a2 + · · ·+ an

n
.

Since all the ai are greater than zero, we have A > 0, and
thus an xk can be defined for every ak like so:

xk =
ak
A
− 1.

Each xk can be substituted into (5), giving n inequalities:

a1

A
≤ exp

( a1

A
− 1

)
...

an

A
≤ exp

( an

A
− 1

)
.

Multiplying all these inequalities together,

a1 · · · an

An ≤ exp
( a1

A
− 1

)
× · · · × exp

( an

A
− 1

)
≤ exp

( a1

A
− 1 +

a2

A
− 1 + · · · an

A
− 1

)
≤ exp

(
a1 + a2 + · · ·+ an

A
− n

)
≤ exp(n− n)

finally gives
a1a2 · · · an

An ≤ 1

which is the same as (4).
A final thought: when does the equality hold? When is

the arithmetic mean strictly equal to the geometric mean?
If a1 = a2 · · · = an then each of the ai are equal to the
average value A. We then have a1a2 · · · an = An.


